
Security Considerations for Next-Generation Operating Systems for
Cyber-Physical Systems ∗

Bryan C. Ward*, Richard Skowyra*, Samuel Jero*, Nathan Burow*, Hamed Okhravi*, Howard Shrobe†, and
Roger Khazan*

*MIT Lincoln Laboratory, †MIT CSAIL

1 Introduction
Cyber-physical systems (CPSs) are increasingly targeted in high-
profile cyber attacks. Examples of such attacks include Stuxnet,
which targeted nuclear centrifuges; Crashoverride, and Triton,
which targeted power grids; and the Mirai botnet, which targeted
internet-of-things (IoT) devices such as cameras to carry out a
large-scale distributed denial-of-service (DDoS) attack. Such at-
tacks demonstrate the importance of securing current and fu-
ture cyber-physical systems. Therefore, next-generation operat-
ing systems (OSes) for CPS need to be designed to provide secu-
rity features necessary, as well as be secure in and of themselves.

CPSs are designed with one of three broad classes of OSes:
(a) bare-metal applications with effectively no operating system,
(b) embedded systems executing on impoverished platforms run-
ning an embedded or real-time operating system (RTOS) such
as FreeRTOS, or (c) more performant platforms running general-
purpose OSes such as Linux, sometimes tuned for real-time per-
formance such as through the PREEMPT_RT patch. In cases (a)
and (b), the OS, if any, is very minimal to facilitate improved
resource utilization in real-time or latency-sensitive applications,
especially running on impoverished hardware platforms. In such
OSes, security is often overlooked, and many important security
features (e.g. process/kernel memory isolation) are notably ab-
sent. In case (c), the general-purpose OS inherits many of the
security-related features that are critical in enterprise and general-
purpose applications, such as virtual memory and address-space
layout randomization (ASLR). However, the highly complex na-
ture of general-purpose OSes can be problematic in the develop-
ment of CPSs, as they are highly non-deterministic and difficult
to formally reason about for cyber-physical applications, which
often have real-time constraints. These issues motivate the need
for a next generation OS that is highly capable, predictable and
deterministic for real-time performance, but also secure in the
face of many of the next generation of cyber threats.

In order to design such a next-generation OS, it is necessary to
first reflect on the types of threats that CPSs face, including the at-
tacker intentions and types of effects that can be achieved, as well
as the type of access that attackers have. While threat models are
not the same for all CPSs, it is important to understand how the
threat models for CPSs compare to general-purpose or enterprise
computing environments. We discuss these issues next (Sec. 2),

∗DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited.

This material is based upon work supported by the Assistant Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8702-15-D-
0001. Any opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
Assistant Secretary of Defense for Research and Engineering.

before providing insights and recommendations for approaches
to incorporate in next-generation OSes for CPS in Sec. 3.

2 Threat Models
The strategy chosen by an adversary depends heavily on their
goal. The cybersecurity community frequently partitions these
into three categories, referred to as the Confidentiality, Integrity,
and Availability (CIA) triad. Cyber-physical systems must also
be concerned with an additional category: Safety. CIAS simulta-
neously refers to guarantees that a system defender seeks to pro-
vide, and properties that an attacker seeks to subvert. As part of a
larger campaign, adversaries may target any number and combi-
nation of these categories.

Confidentiality ensures that data of interest is only able to be
read by parties authorized to read that data. Thus, an attacker
focused on breaking confidentiality seeks to learn sensitive in-
formation that they are not authorized to know (e.g., passwords,
financial information, or trade secrets). While confidentiality at-
tacks are often an end-goal in general-purpose computing (e.g.
theft of credit card data), they may act as a stepping-stone in the
CPS domain. For example, an attacker seeking to cause physical
or economic harm may attempt to impersonate an authorized op-
erator by stealing authentication credentials via a confidentiality
attack, enabling them to later issue commands that put a process
plant in a dangerous or low-yield state.

Integrity ensures that data of interest cannot be undetectably
modified or created by unauthorized parties. An attacker focused
on breaking integrity may seek to inject forged information, cor-
rupt existing data, or otherwise deceive the system. In the CPS
domain, integrity attacks may manifest as spoofed or modified
sensor values in order to mis-represent the state of a physical pro-
cess, or corrupted messages from a controller to an actuator that
causes over- or under-compensation. For example, an attacker
could inject messages on an automotive CAN bus (e.g., via a ma-
licious OBDII interface) that falsely indicate the brake pedal has
been depressed, causing an unexpected and potentially dangerous
vehicle deceleration.

Availability ensures the system is functioning and able to per-
form its task. Denial-of-service (DoS) attacks target availability
and seek to render a target unable to provide its intended ser-
vice. Depending on the system under attack, DoS attacks can
range from flooding a shared bus with spurious messages to pre-
vent critical sensor/actuator messages from being transferred, to
frequency-shifting attacks on power grids that induce automated
load shedding [3].

Safety ensures the system does not cause physical harm. It is
unique to the cyber-physical domain and not part of the tradi-

1



tional CIA triad, largely because general-purpose computers are
unlikely to cause direct physical harm under cyber-attack. In the
CPS domain, however, physical processes are governed by soft-
ware control systems that if attacked can endanger human life.
Attacks on safety may leverage any combination of integrity vi-
olations (forged or corrupted messages that cause control loop
destabilization), denial of service (denying a bus to stop a sys-
tem from leaving a dangerous state), or theft of secrets (stolen
credentials used to initiate an unsafe operation).

2.1 Access Vectors
In the past, CPS were seen (rightly or not) as largely discon-
nected from the larger Internet. The growing popularity of Inter-
net of Things (IoT) devices and cellular-connected automobiles
has put an end to this perception. Remote attackers are now a
genuine threat to CPS. Nonetheless, even for isolated, air-gapped
networks, hardware ports (e.g., USB or OBDII) and privileged
control interfaces can serve as useful vectors by which an attacker
can compromise a system. Therefore, any cybersecurity defense
must consider the threat model and access vector of the attacker.

Remote Attackers can compromise a system by supplying ma-
liciously formed input over a legitimate communications chan-
nel. This input is designed to exploit a bug in message parsing
or handling logic, which causes the system to enter an attacker-
dictated state. Malicious input includes sensor data, control com-
mands, and low-level network-packet data. It is important to note
that the attack surface extends beyond the application listening
on that channel. The OS managing the network hardware, drivers
that encode/decode data, and support libraries handling message
processing are all potential targets for exploitation.

Hardware ports (e.g. USB) can allow a system to be com-
promised even if it is isolated from attacker-accessible networks.
Due to the generality of the protocol, an OS queries a newly con-
nected USB device to determine its function. Malicious devices
can mis-represent themselves, causing, for example, a thumb
drive to be treated as a keyboard. The malicious drive can then
log or inject keystrokes, as though it were a user. Other hardware
ports, such as Thunderbolt, allow a high-throughput operating
mode for Direct Memory Access (DMA), which bypasses the OS
and memory permissions and isolation. A malicious Thunderbolt
device could thus potentially overwrite the entire OS with code
of its choosing, corrupt a target application, etc.

Privileged control interfaces may be leveraged by an attacker
to put a CPS into an unsafe or unrecoverable state. Even if these
interfaces are not intended to be remotely accessible, attackers
may still be able to acquire access. Unintended bridging of the
cellular network to automobile CAN buses, for example, has been
demonstrated by exploiting a vulnerability in the car’s infotain-
ment package [6]. In networked CPSs, automated malware can
seek out and steal the authentication credentials of privileged
users, and interact with software-based control interfaces using
this elevated access. Malicious insiders can also issue such com-
mands. While not a cybersecurity problem directly, insider at-
tacks demonstrate that it remains necessary to architect a CPS
such that it is resilient to commands that may place it in an un-
safe or unrecoverable state.

2.2 Common Attack Techniques
While cyberattacks can leverage myriad techniques in an attempt
to compromise a system, there are a few strategies that are heavily

relied on due to the systemic, widespread vulnerabilities that they
can exploit. Understanding these techniques can enable CPS de-
signers to better architect new systems, and to understand where
their efforts should be focused in defending extant systems.

Memory corruption exploits leverage software bugs in com-
piled languages such as C and C++. These bugs enable an at-
tacker, via a malicious input, to corrupt program state that is ad-
jacent in memory to the object storing the attacker-provided in-
put. Once memory corruption has occurred, an attacker can com-
pletely subvert the running process, read any data in memory, and
execute arbitrary code of their choosing. Memory corruption is
particularly powerful in the embedded and bare-metal domains,
where memory isolation mechanisms like virtual memory do not
exist. This can allow a corrupted process to corrupt other running
processes, and potentially the OS itself.

Command injection exploits target logical bugs in applications
which can receive a mix of data and control messages. The at-
tacker provides an input, which is intended to contain only data,
but the vulnerable application treats some or all of the message
as control commands. A well-known example is SQL injection,
which uses the ‘;’ character to denote the end of a command. By
appending a semi-colon and a command on to the end of a data
field, attackers can induce an SQL database to execute that com-
mand. Command injection is also frequently leveraged against
complex file formats (e.g. streaming audio/video), in which one
part of a file is used to inform the process about how to interpret
another part of that file.

Message forgery and corruption exploits the lack of confiden-
tiality and integrity checks on messages sent over a communica-
tions channel (e.g. a shared bus). Attackers either craft and in-
ject a message of their choosing (including source and destina-
tion addresses), or capture, modify, and re-inject an originally be-
nign message. Such attacks can corrupt sensor data, execute con-
trol commands, cause unexpected device actuation, etc. Crypto-
graphic protections can eliminate forgery and corruption attacks
entirely, but are often difficult to implement on resource-starved
systems. This is especially true in real-time contexts, where the
added latency can cause deadline misses.

Side channels are a popular attack technique in general-
purpose computing to break confidentiality. However, the appli-
cability of such attacks in CPS systems given the attacker ac-
cess vectors should be carefully considered before developing
defenses. For example, cache-based side channels are relevant
threats to consider in a cloud-computing environment, in which
a malicious co-tenant may infer secret information from another
co-tenant (e.g. secret key). Many CPS applications do not share
common processing hardware between the victim and a poten-
tial attacker process, and therefore such threats are less pertinent.
However, an attacker may infer confidential information via other
side channels in CPS systems, which they may be able to read
more easily (e.g., network timing).

3 Recommendations
We next elaborate on several recommendations to address these
threats to CPS within the OS.
Memory Safety and Operating Systems.Given the prevalence of
memory-corruption bugs and their ease of exploitation particu-
larly on impoverished embedded platforms that lack standard OS
features (e.g., virtual memory or ASLR), memory safety can pro-

NGOSCPS 2019, April 15 2019, Montreal Canada 2



vide tangible benefit in securing CPS systems. Memory-safe pro-
gramming languages provide the spatial (e.g., preventing buffer
overflows) and temporal (e.g., preventing use-after-free bugs)
safety guarantees using a combination of compile-time checks,
language restrictions (e.g., lack of pointer arithmetic), and run-
time checks. Given the often limited resources in CPS systems,
memory-safe languages that do not have a large language run-
time and are designed for system programming (e.g. Rust) pro-
vide some of the most viable options. In addition, because of the
lack of OS isolation primitives in many classes of CPS systems
(the typical user/kernel space isolation), OSes that are themselves
developed in a memory-safe language (e.g., Tock OS [5] devel-
oped in Rust) provide a more complete protection. To our knowl-
edge, no RTOS is developed in a memory-safe language.

Isolation.Legacy code or binaries for which the source code is
no longer available may preclude porting an entire system to a
memory-safe language. In such cases, isolation can provide a
weaker alternative. Isolation ensures that modules of a CPS sys-
tem are separated in such a way that they can only interact along
well-defined and often limited interfaces. A popular approach for
realizing isolation is using a separation kernel, such as a micro-
kernel, that implements strong non-interference among the pro-
cesses that run atop it. seL4 [4], for example, can provide such
a separation kernel. Further, seL4’s implementation is formally
proved to match its specification on a number of platforms given a
set of assumptions about the hardware and the hard-coded assem-
bly code. seL4 and similar microkernels have even been ported to
resource-limited, embedded systems (such as Raspberry Pi) that
are used frequently in CPS architectures.

Recovery.Unlike traditional computing systems, cyber-physical
systems control real physical devices that may be capable of
catastrophic and deadly damage if operated unsafely. Availabil-
ity is also a serious concern in many cases, like drones and
other vehicles, where real-time corrections are needed to keep
the physical system safe and stable. As a result, the crucial issue
of how to mitigate and recover from a detected attack must be
addressed. Simply crashing the program, as frequently done in
general-purpose systems to prevent integrity and confidentiality
compromise, is not acceptable.

This area of recovery and restoration after an attack has not yet
been extensively studied. Such a recovery function needs to be
able to restore software to its uncorrupted state. More challeng-
ingly, it needs to ensure that the entire system, including hard-
ware and software components are in an understood and consis-
tent state, possibly via reinitialization. Finally, all of this needs
to be done within the real-time constraints of the system. Such
work has many parallels with mixed-criticality scheduling [1], as
well as fault-tolerant computing. However, the models and as-
sumptions are different. For example, cyber attacks are not the
result of a stochastic process, so the threat model must be care-
fully considered, as well as how such threats and their detection
are incorporated into the recovery process.

Minimization of privileges and trust.Another way to protect CPS
systems is to minimize privileges of system components and
trust among components. In the CPS domain, privileges and trust
be viewed through the lens of both the cyber and physical do-
mains. Therefore, control processing, which interfaces with phys-
ical hardware devices (e.g., sensors and actuators), may be cru-

cial to the safety, integrity and availability of the system, and
thus must be trusted more than other userspace applications in
general-purpose systems. Components in CPS systems should
only be able to read or modify exactly the state, either cyber (i.e.,
in memory) or physical (i.e., through sensors or actuators) re-
quired to accomplish its functionality.

Accomplishing this is harder than it sounds because standard
ring-privilege models used in many processors are broad and hi-
erarchical. This results in many components with the same or
overlapping privileges and, therefore, ability to modify the same
state. As a result, many different components could be compro-
mised and used to cause the same impact. Instead, privileges
should be fine-grained and orthogonal, such that different com-
ponents have non-overlapping privileges. This restricts the set of
components that can be used to cause some impact. Fine-grained
and orthogonal permissions are not common in today’s systems,
but tagged architectures and capabilities are both promising ways
to provide these features. Other software-based approaches have
proposed decomposing applications into sub-components based
on the permissions required, and peripheral devices accessed [2].

One powerful idea enabled by orthogonal privileges is the low-
privileged operating system, which is actually more restricted
than userspace in its permissions. Certainly, it would still have
ability to do memory management and context switching, which
traditionally require high privilege, but it would be restricted
in other ways, like being unable to examine userspace memory
without explicit permission. Such a design would reduce the im-
pact of an attacker who exploited a bug in the OS.

4 Conclusion
The physical nature of CPS gives rise to unique OS design
considerations both for performance (e.g. real-time constraints),
as well as security. Cyber attacks against CPS may have dif-
ferent intentions and access vectors then threats to general-
purpose systems. For example, threats to availability and physi-
cal safety are higher-priority threats than against general-purpose
systems. Such threats necessitate more secure OS designs for
CPS. We have summarized several recommendations to address
these types of threats, including memory-safety, isolation, recov-
ery, and trust/privilege minimization. Importantly, incorporating
these recommendations into a CPS-focused OS will have differ-
ent performance and design considerations (e.g. real-time cor-
rectness), then when realized in a general-purpose systems.

References
[1] A. Burns and R. Davis. Mixed criticality systems – a review, 2018.
[2] A. Clements, N. Almakhdhub, S. Bagchi, and M. Payer. ACES: Automatic

compartments for embedded systems. In Proceedings of USENIX Security,
2018.

[3] Adrian Dabrowski, Johanna Ullrich, and Edgar R. Weippl. Grid shock: Co-
ordinated load-changing attacks on power grids: The non-smart power grid
is vulnerable to cyber attacks as well. In Proceedings of ACSAC, 2017.

[4] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. seL4: Formal verification of an OS kernel. In Pro-
ceedings of SOSP, 2009.

[5] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pan-
nuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB computer
safely and efficiently. In Proceedings of SOSP, 2017.

[6] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered pas-
senger vehicle. Black Hat USA, 2015.

NGOSCPS 2019, April 15 2019, Montreal Canada 3


