
Analysis of DCCP for Delay/Disruption Tolerant Networking

Samuel Jero
Internetworking Research Group, Ohio University

Delay/Disruption Tolerant Networks Datagram Congestion Control
ProtocolThe DTNBone

The Problem

The Datagram Congestion Control Protocol (DCCP) is a
transport layer protocol designed to provide congestion
control for applications that care more about receiving data
regularly than about retransmitting lost data.

This protocol is ideal for VOIP, IPTV, and on-line games where
congestion control is necessary, but reliable delivery could
cause long delays or pauses in the content stream. DCCP is
also perfect for our LTP tests because it makes no guarantee of
reliable delivery; it only provides congestion control.

Key Features of DCCP:
 ▪ Congestion control
 ▪ No guarantee of reliable or in-order delivery
 ▪ Connection-oriented protocol
 ▪ Multiple congestion control algorithms to choose from
 ▪ Explicit Congestion Notification capable
 ▪ Acknowledgments can be congestion controlled
 ▪ Highly extensible
 ▪ Implemented in the Linux kernel since 2005

Congestion control algorithms currently implemented:

 1. "TCP-like congestion control". This algorithm is extremely similar to
 SACK-based TCP's congestion control and is recommended for
 those applications that would like as much bandwidth as possible.
 This is the algorithm we chose to use to connect ION nodes.

 2. "TCP-friendly rate control". This algorithm is designed for those
 applications that would like to minimize sudden changes in sending
 rate, for instance, VOIP applications. This algorithm is not
 window based. Instead it is based on a rate of sending packets which
 is reduced in response to congestion.

1/2

Characteristics:
 1. Long round trip times across the network
 2. Frequent interruptions in connectivity
 3. High error rates

Hence, normal TCP/IP protocols operate poorly

Ohio University, in partnership with NASA, is working to
develop solutions to the problem of networking in deep
space.

We are maintaining and testing an implementation of the
Bundle Protocol and the Licklider Transmission Protocol
known as the Interplanetary Overlay Network (ION).

For testing purposes, a group of organizations has put
together a worldwide collection of ION/DTN2 nodes known
as the DTNBone.

The Bundle Protocol [RFC 5050] and the Licklider
Transmission Protocol (LTP) [RFC 5326] have been
specifically designed to operate well in this
environment.

(DTNGateway)
iongateway.dtn

200

(DTNNetwork
Manager)

ionnetman.dtn
212

ion1.dtn
201

ion2.dtn
202

ion3.dtn
203

ion4.dtn
204

ion5.dtn
205

ion6.dtn
206

ion7.dtn
207

ion8.dtn
208

ion9.dtn
209

Ion10.dtn
210

ion11.dtn
211

P2P1

P2

P1

P4

P5

P3

P6

P6

P6

P7

P7

P7

IONDTNboneAlways AvailableDisconnected Network
Ohio University

P3

We want to test DTN protocols across the Internet in order to get
an understanding of how these protocols will operate in complex
environments of many nodes and unexpected changes. However,
in order to do that, we need to determine how to encapsulate DTN
protocols to be able to connect DTNBone nodes across the
terrestrial Internet.

We came up with three options:
 1. TCP -- This is not a good choice because it is reliable and we
 need to test LTP, which provides reliable delivery.

 2. UDP -- This is what was used for a long time. However, without
 congestion control, LTP will send faster than the
 connection can sustain causing congestion collapse.

 3. DCCP -- Provides congestion control without reliability. This
 makes it particularly well suited for our application.

Deep space networking has all the characteristics of a
Delay/Disruption Tolerant Network (DTN):
 1. Long Round trip times -- from hours to seconds
 2. High error rates -- on the order of 10 to 10
 3. Interruptions in connectivity -- as planets pass between
 endpoints

-1 -3

Im
age courtesy N

A
S

A
/JP

L-C
altech

Im
age courtesy N

A
S

A
/JP

L-C
altech

Analysis of DCCP for Delay/Disruption Tolerant Networking

Samuel Jero
Internetworking Research Group, Ohio University

DCCP Analysis Methodology

ConclusionsDCCP AnalysisDCCP and ION

2/2

TCP UDP DCCP (TCP-like) DCCP (TCP-friendly)
0

200

400

600

800

1,000

1,200

K
b

it
s/

se
c

Once we added DCCP encapsulation to ION's LTP
implementation, we noticed some very interesting
behaviors using the current DCCP development kernel
(pulled 10/3/2010 -- based on Linux 2.6.36-rc3). These
behaviors are best explained by the following graphs:

Test 1 Test 2 Test 3
0

100

200

300

400

500

600

700

800

900

1,000

Variation In Throughput for DCCP (TCP-like)
1.5Mbit/sec Satellite Link

K
bi

ts
/s

ec

2249800000

2249750000

2249700000

2249650000

10.790010.780010.770010.7600

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S
SS
SS
SSS
SSS
SS
SSSSSSS

SS
SS

SSSSSSS

sequence number

time

2257500000

2257400000

2257300000

2257200000

2257100000

2257000000

15.800015.600015.400015.2000

sequence number

time

DCCP reduces congestion
window to 1 packet per round
trip time

DCCP randomly pauses for
200ms multiple times during
the connection

For Further Information
Please contact Samuel Jero at sj323707@ohio.edu. More

information on DTN Research at Ohio University is available at
http://irg.cs.ohiou.edu

Acknowledgments
We thank Shawn Ostermann for guidance and advice in this research and

Gilbert Clark for aiding in innumerable small ways.

DCCP's throughput
compares poorly with
TCP's or UDP's

There are huge
variations between
connections on the
same link

Throughput over a 1.5Mbit/sec
Satellite Connection

 1. Setup a bridged machine between two DCCP nodes

 2. Capture packets on the middle machine while
 transferring data using DCCP between the other two
 machines

 3. Use a program that we wrote to transform these DCCP
 packet captures into equivalent TCP packet captures
 (this only works because the DCCP congestion control is
 nearly identical to TCP's)

 4. Run this TCP capture through Tcptrace to generate
 connection graphs for analysis

DCCP was designed to provide congestion control for
applications that care more about receiving data regularly
than about retransmitting lost data. It seems well poised to
provide that, but the only maintained implementation
exhibits behavior that severely limits it's usefulness.

The Linux implementation of DCCP needs improvement
before it is ready for practical deployment on the Internet.

The issues discovered here need to be overcome before
we can practically use this protocol even for testing
purposes.

These issues are:
 1. Poor performance compared to TCP and UDP
 2. Tendency to operate with congestion window of one
 packet
 3. Random 200ms pauses in connections
 4. Inconsistent response to lost packets

Future Work

 1. Analyze Linux source code to find any bugs that might be
 causing these problems. Then develop and test fixes and
 inform the authors.

 2. Any remaining issues should be taken up with the DCCP
 IETF working group.

 3. Once these problems are fixed we can convert the
 DTNBone over to DCCP and continue DTN testing.

We also determined that the Linux implementation of DCCP
responds inconsistently to dropped packets. We have
observed any of the following as reactions to dropped
packets:
1. Reducing congestion window
2. Doing nothing
3. Increasing congestion window

Time Sequence Graph of a Typical Linux DCCP Connection

S
eq

u
e

n
c

e
N

u
m

b
er

Absolute Time (minutes:seconds)

