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§ SDN centralizes 
decisions into an 
SDN controller

§ SDN controller acts 
as a network 
operating system

§ Network 
applications (apps) 
extend functionality

SDN Overview
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§ IEEE S&P magazine, 2017
– “Attacks against SDN controllers 

and … malicious controller 
apps are probably the most 
severe threats to SDN.”

– “Dynamic configurations make 
it more difficult for defenders to 
tell whether the current or past 
configuration is intended…”

State of SDN Security
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Need for greater insight into 
network decision-making 

among apps



RBAC in Control Plane
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Current solutions rely on role-based access control (RBAC)
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RBAC Policy:
• a1: HOST_READ, HOST_WRITE
• a2: HOST_READ, HOST_WRITE, 

FLOWRULE_READ, 
FLOWRULE_WRITE



RBAC Limitations
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RBAC is insufficient because it does not track information flow
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§ Formalize cross-app poisoning (CAP)
§ Perform static analysis of apps to find CAP gadgets
§ Incorporate information flow control (IFC) in 

control plane
§ Apply data provenance techniques to track 

information flow and enforce IFC with minimal 
additional latency (PROVSDN)

Approach
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High level goal: Track information flow
within the SDN control plane



§ Attacker objective: arbitrarily install flow rules
to affect data plane connectivity

§ Defender objective: prevent CAP attacks even 
after RBAC has been applied

§ System assumptions:
– SDN controller is trusted and adequately secured
– Apps may originate from third parties; untrusted
– Attacker controls a least-privileges app

Threat Model
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§ IFC integrity problem
§ Model RBAC policy with 

apps, control plane’s data 
structures (objects), and 
read and write
permissions (edges)

Cross-App Poisoning (CAP)
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Goal: Find paths from apps 
to objects that are not 

directly connected 



CAP in ONOS
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RBAC Policy

Strong connectivity 
shows potential highly 

dependent data



CAP in ONOS
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• 63 apps (excluding test app)
• 212 protected methods in 

39 manager classes

Strong connectivity 
shows potential highly 

dependent data



§ Writes may not always 
causally depend on reads

§ Use static analysis 
§ Identify CAP gadgets that 

allow flow from a 
permissioned data source
to a permissioned data sink

§ Assume the attacker uses a 
triggering app to start

CAP Gadgets

11

Source

Sink

Sources and sinks in ONOS 
forwarding app fwd



CAP Gadgets in ONOS
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Attackers can leverage other data structures to 
affect flow rules without flow rule permissions
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§ Use data 
provenance to 
record control 
plane state 

§ Online reference 
monitor 
enforces IFC

§ Implemented 
on ONOS

PROVSDN
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§ Use triggering app trigger
to modify an incoming 
packet before being received 
by forwarding app fwd

§ Label: trigger as low 
integrity and fwd as high 
integrity

§ Policy: prevent low from 
flowing to high

Attack Evaluation
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§ Average latencies:
– Without PROVSDN: 11.66 ms
– PROVSDN, no IFC: 28.51 ms
– PROVSDN with IFC: 29.53 ms

Performance Evaluation
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Acceptable latency when 
amortized over long flows



§ We analyzed the IFC integrity problem in SDN 
control planes by investigating information flow

§ We proposed a model to identify cross-app 
interactions as vectors for potential attacks and 
found where they existed in ONOS as a case study

§ We proposed a data provenance approach with 
PROVSDN to record control plane state evolution and 
enforce IFC in an online reference monitor

§ We implemented PROVSDN in the ONOS controller

Summary
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§ Thanks for listening!
§ Ben Ujcich

E-mail: ujcich2@illinois.edu
Web: http://ujcich2.web.engr.illinois.edu/

Questions?
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Backup Slides
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§ JavaParser to build abstract syntax tree (AST)
§ Sources and sinks derived from analysis of 

where permissioned methods were called in 
apps

§ Field-sensitive inter-procedural data flow 
analysis

Static Analysis for ONOS
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W3C PROV Data Model
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Source: W3C. ” PROV-O: The PROV Ontology”, 
https://www.w3.org/TR/prov-o/



W3C PROV Semantics
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PROVSDN Microbenchmarks
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§ Availability-based attacks à can still audit past 
actions to influence policy-making process

§ Separation of memory enforcement à redesign 
controllers

§ Language-based limitations
– C/C++ controllers
– Python controllers
– Java controllers

Limitations
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