Cross-App Poisoning in
Software-Defined Networking

Benjamin E. Ujcich?, Samuel Jero?, Anne @
. . type = Packetin
Edmundson3, Qi Wang', Richard Skowyra2, f u
A

James Landry?, Adam Bates', William H. Win
Sanders?, Cristina Nita-Rotaru4, and Hamed trigger:attack
. asGeneratedB

Okhravi? y

1 ’

I I L LI N o I S ! Assvc\iéci;ted used
2]@{ LINCOLN LABORATORY ::Assvcziisated fwd:callback
MASSACHUSETTS INSTITUTE OF TECHNOLOGY | With v :

- “was InformedBYy

W PRINCETON .
UNIVERSITY e e

Northeastern <_ _ ForwardingObject

2018 ACM SIGSAC Conference on Computer and E ILLINOIS
Communications Security (CCS '18)

Electrical & Computer Engineering
15-19 October 2018 — Toronto, ON, Canada e

| SDN Overview

= SDN centralizes APPLICATION pLaNE |EXterall _ [External] External
.. . app app Apps
decisions into an Northbound AP\, 7 FF°
Core APPLICATION PLANE |
SDN COIltl‘Ollel‘ NB API Internal app |
modules
= SDN controller acts SDN | [Core methods I\ internal app
Controller [pata stores :
as a network SB API Internal app
Oper atlng SYStem Southbound APIY
CONTROL PLANE
= Network AP Ty E s PGy IR AN B I

applications (apps)
extend functionality

End|
host

Forwarding Devices

End Hosts host

End

State of SDN Security

SYSTEMS ATTACKS AND DEFENSES

L]
Editors: William Enck, whenck@ncsu.edu | Thorsten Holz, thorsten.holz@rub.de | Angelos Stavrou, astavrou@gmu.edu . [| l EEE S @P m a g a Z 1 n e Z O 1 ;

Security Challenges and Opportunities of — “Attacks against SDN controllers
Software-Defined Networking and ... malicious controller

Marc C. Dacier | Qatar Computing Research Institute

Haru i and R Cusiok | s Uiy of ey Cocs apps are probably the most

Sven Dietrich | City University of New York

severe threats to SDN.”
5 (SDN) has attracted much SDN euah]ed networksammp

o ey i et e — “Dynamic configurations make

2016, the market research ~ (service-level ~agreements, ~qual-

e the beginning of the andsw:tchesbecome sIaves of this
e, s li

ernational Data Corporation ity of service, policy management, o d o ff. l

_ bredicted that th ket fo d . ch t t f d f d t
v o o o iy el peon 1t more ditlicult 1or detenders to

S$35 billion by 2020.! protocol to provide communica-

Ty e tell whether the current or past

- isionmakers.Consequently and thus allows for interoperabil-
tions are high regarding

fom = b e 1y g e configuration is intended...”

as Nokia, Cisco, Dell, HP, icies, another key advantage of SDN
IBM, and VMware have is that it allows routing choices to be
ed their own SDN strate- defined at a much finer granularity
ajor switch vendors as well level, that is, per flow rather than at

S T Need for greater insight into
network decision-making
among apps

1ce, SDN provides a way to the flow it belongs to and, thus, deter-
re network infrastructure— mine the route it should follow.
Vol. 15,2 Lify it and to igure and

| RBAC in Control Plane

RBAC Policy:
* aq: HOST_READ, HOST_WRITE
Host tracking * a,: HOST_READ, HOST_WRITE,
network app (a,) FLOWRULE_READ,
FLOWRULE_WRITE

Malicious
network app (a)

_____ ‘ - e |
add f/oﬁ/ rules i
dirgctly

Host manager SDN Flow rule manager

H v controller o I
ost data (control plane) D NG

store data store

| RBAC Limitations

RBAC Policy:
* aq: HOST_READ, HOST_WRITE
Host tracking * a,: HOST_READ, HOST_WRITE,
network app (a,) FLOWRULE_READ,
FLOWRULE_WRITE

Malicious
network app (a)

Host"managtr SDN Flow rulg?rxapgger

I
I
I
I controller
I
I
I

Host data (control plane) Flow rule
store data store

Approach

High level goal: Track information flow

within the SDN control plane

= Formalize cross-app poisoning (CAP)
= Perform static analysis of apps to find CAP gadgets

* Incorporate information flow control (IFC) in
control plane

= Apply data provenance techniques to track
information flow and enforce IFC with minimal
additional latency (PROVSDN)

Threat Model

= Attacker objective: arbitrarily install flow rules
to affect data plane connectivity

= Defender objective: prevent CAP attacks even
after RBAC has been applied

= System assumptions:

— SDN controller is trusted and adequately secured
— Apps may originate from third parties; untrusted

— Attacker controls a least-privileges app

B8 f;%
Sl

Cross-App Poisoning (CAP)

* JFC integrity problem

* Model RBAC policy with
apps, control plane’s data
structures (objects), and
read and write
permissions (edges)

Goal: Find paths from apps

to objects that are not
directly connected

CAP Sem
a [O

a =Pl o

antics

Read
permission

Write
permission

Example with

b

Object o,

RBAC Policy
App ay /LAIOP dj

S

Object o,

CAP in ONOS -

OMOs

Open Networ k Operating System

CAP for (Security-Mode)
ONOS with Least-Privileges
RBAC Policy

‘ ONOS app

ONOS object
Q (data structure)

Strong connectivity

L >V A

shows potential highly
dependent data

Open Network Operating System

©
2 20-
()
<1 JI A
ﬁ 151 mmm Directly
Y = Via 1 app
(U . .
o 101 mmm Via 2 apps
9]
()
T 5-
o
H#*

0_

o Q@Qo(‘\\\’?\ Qeﬂ(\ &\?@06&62 *‘0 c}o‘ éd\o‘\’d\ C\Q\@\\‘\&,&& S} x.‘v\&).@} \0%00 (\z\e(\‘ g,;%gg\%\c%@%&\ 0\ MO e?‘p“ N ((\\‘Oex\ @6(:\\‘2) C"‘<<\°‘a°\ Q(‘ (,'b Q@‘ & \&Q&
(\

2 6"' \go oe" @
N ,e«\q K\c (0% <Q<x 2 N3 R ’OQ <5 ° (\ &
Qo &“\ R «\e‘?@! 0" = & & RS &\\’* d— 3\\2&\%@"’ & @ < @ Q’O‘ é‘c}\
& & B S o é\é@ PR R S « B
& % <
App a

Strong connectivity

* 63 apps (excluding test app) S
212 protected methods in shows potential highly
39 manager classes dependent data

BE

10

Sources and sinks in ONOS
forwarding app fwd

| CAP Gadgets

* Writes may not always

1 public class ReactiveForwarding {
2 public void activate(...) {
3 .
Causally depend On reads 4 appIld = coreService.registerApplication("org.onosproject.
— fwd");
5 packetServ\J/ice.addProcessor(processor, PacketProcessor.
: < < director(2));
= Use static analysis o
7 }
. 8 private class ReactivePacketProcessor implements Source
f}r PacketP {
o Identl CAP gadgets that 9 pu:icasoid ;?EEZ::EPacketContext context) {
10 .
11 installRule(context,...);
allow flow from a s
13
. o 14 private void installRule(PacketContext context,...) {
permissioned data source = U0 T U
16 ForwardingObjective forwardingObjective =

o R ° < DefaultForwardingObjective.builder().withSelector(
to a permISSIOned data Slnk < selectorBuilder.build()).withTreatment(treatment).
< withPriority(flowPriority).withFlag(
< ForwardingObjective.Flag.VERSATILE) . fromApg<ap Ire.
< makeTemporary(flowTimeout).add(); |
flowObjectiveService. forward(context.inPacket().
< receivedFrom().deviceId(), forwardingObjective)

S

= Assume the attacker usesa

18 }

triggering app to start v

X [E[®: 11

| CAP Gadgets in ONOS e

Open Network Operating System

Table 1: Static Analysis Results of CAP Gadgets for Security-Mode ONOS Apps.

Source (p € PR)

App (a € A)

Sink (p € Pw)

Attacker’s capabilities if source data have been compromised by attacker

APP_READ
APP_READ

APP_READ
APP_READ
APP_READ
DEVICE_READ
DEVICE_READ
DEVICE_READ
HOST_READ
PACKET_READ
PACKET_READ

openstacknetworking
openstacknode

openstacknode
routing

sdnip
newoptical

vtn

vtn

vtn

fwd

learning-switch

FLOWRULE_WRITE
CLUSTER_WRITE

GROUP_WRITE
CONFIG_WRITE
CONFIG_WRITE
RESOURCE_WRITE
DRIVER_WRITE
FLOWRULE_WRITE
FLOWRULE_WRITE
FLOWRULE_WRITE
FLOWRULE_WRITE

Attacker modifies the app ID to remove all flows with a given app ID

Attacker modifies the app ID to make an app run for leader election in a different
ONOS topic (i.e., an app using ONOS’s distributed primitives)

Attacker modifies the app ID to associate an app with a particular group handler
Attacker modifies the app ID to misapply a BGP configuration

Attacker modifies the app ID to misapply an SDN-IP encapsulation configuration
Attacker misallocates bandwidth resources based on a connectivity ID

Attacker misconfigures driver setup for a device (i.e., switch)

Attacker misconfigures flow rules based on a device ID

Attacker misconfigures flow rules based on a host with a particular MAC address
Attacker injects or modifies an incoming packet to poison a flow rule

Attacker injects or modifies an incoming packet to poison a flow rule

Attackers can leverage other data structures to
affect flow rules without flow rule permissions

| PROVSDN

External External| External
|
Use data APPLICATION PLANE app app Apps
provenance to ... @ @@ Northbound APl ___. .
| PROVSDN Core v APPLICATION PLANE |

Collector NB API Internal app
) modules

— (\g Protectea;/access Internal app

/ | Core methods |

record control
plane state

Provenance
graph

19]|011U0D NAS

. : reference | Data stores | :
® Online reference | [Jircpolih “megiter) | —saer]| \[Internal app

mo IlltO r Southbound API

CONTROL PLANE Switch Switch Switch

enforces IFC CONTROLPLANE _ puitch _ Switehj____pwiteh

Forwarding Devices

* Implemented .
on ONOS host| ™ End Hosts host

EE[SC 13

PRO

| Attack Evaluation

= Use triggering app trigger

e b

g

Provenance graph
v generated by PROVSDN

PacketContext
type = Packetln

was PROV
to modify an incoming Wi/ " Entity
. . : : PROV
packet before being received .., ggeratack | activity
asGeneratedBy
1 Agent
by forwarding app fwd m
. ype = Packetin
= Label: trigger aslow , — FROV
o o o : Wciae use ntity
integrity and fwd as high S N
: : e B PROV
lntegrlty '.ASSVC\)/Citht d vad.caIIback Activity
- P 11 : r n l fr ______ .L __4/_,_/—’waslnformedBy
O—C.Y p eve. tlow from fwd:installRule | A':E:iei\,:
flowing tohigh frasGarmteddy |
 ForwardingObjective "> Entity
XEw 1

| Performance Evaluation

L[e s —— T —— R —
!_.— 7
/ .
0.75 /
L
S 0.50 /)
i - Baseline
0-25 / J: | e ProvSDN (no IFC) |
: —— ProvSDN (with IFC)
0.001 7 / | , :
10 20 30 40 50 60

. Flow start latency [ms]
= Average latencies:

— Without PROVSDN: 11.66 ms
— PROVSDN, no IFC: 28.51 ms
— PROVSDN with IFC: 29.53 ms

Acceptable latency when
amortized over long flows

Summary

* We analyzed the IFC integrity problem in SDN
control planes by investigating information flow

= We proposed a model to identify cross-app
interactions as vectors for potential attacks and
found where they existed in ONOS as a case study

= We proposed a data provenance approach with
ProvSDN to record control plane state evolution and
enforce IFC in an online reference monitor

= We implemented PROVSDN in the ONOS controller

LE®. 16

Questions?

* Thanks for listening!

* Ben Ujcich

E-mail: ujcich2@illinois.edu
Web: http://ujcich2.web.engr.illinois.edu/

Website

CAP Paper

of

i

b 4
- =

A &
{\o1
e r
’\/\p({-
This material is based upon work
supported in part by the National
Science Foundation under Grant Nos.
CNS-1657534 and CNS-1750024. Any
opinions, findings, and conclusions or
recommendations expressed in this
material are those of the author(s) and

do not necessarily reflect the views of
the National Science Foundation.

Backup Slides

Static Analysis for ONOS

= JavaParser to build abstract syntax tree (AST)

= Sources and sinks derived from analysis of
where permissioned methods were called in

apps
» Field-sensitive inter-procedural data flow
analysis

| W3C PROV Data Model

Source: W3C. ” PROV-O: The PROV Ontology”, wasDerivedFrom
https://www.w3.0rg/TR/prov-o/

wasAttributedTo

wasGeneratedBy
Agent used
actedOnBehalfOf
wasAssociatedWith
Activity
startedAtTime endedAtTime
xsd:dateTime wasInformedBy xsd:dateTime

| W3C PROV Semantics

Object or Event W3C PROV-DM Representation
Control plane object Entity

with attributes y/n - Vaue

App method or Activity

(class:method)

function call

App, controller, or
. . . Agent
switch identity (@pp)

App reading object wasAssociated
With iy used i
from the shared Fr (d?;:.n‘gthym Entity
control plane @pp) : ey n=Vales
App writing object to wasGenerated wasAssociated
the shared control Entity ™ BY [Activity | Wi) ot
Key1 = Valuet (class:method)
plane ey n = Value p (app)
Activity 2
(class:method)
Intra-app method or wasinformed
callback method By v
Activity 1
| (class:method) |

Internal service on be- actedOnBehalfOf
Agent > Agent
half of controller Controller

PROVSDN Microbenchmarks

Operation Average time Number of Percent of

per operation operations total time
Collect 155.66 us 23 067 1.38%
Write 11.15 us 57 948 0.25%
IFC check 98.50 pus 544 0.02%
Internal check 44.67 us 5692 315 98.34%

T

Limitations

= Availability-based attacks = can still audit past
actions to influence policy-making process

= Separation of memory enforcement = redesign
controllers

" Language-based limitations
— C/C++ controllers
— Python controllers

— Java controllers

XEe 23

