
Cross-App Poisoning in
Software-Defined Networking
Benjamin E. Ujcich1, Samuel Jero2, Anne
Edmundson3, Qi Wang1, Richard Skowyra2,
James Landry2, Adam Bates1, William H.
Sanders1, Cristina Nita-Rotaru4, and Hamed
Okhravi2

2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18)
15–19 October 2018 – Toronto, ON, Canada

1

2

3

4

Switch Switch

External
Apps

SDN
Controller

Core
Internal app

modules

Internal app

Internal app

…
External

app
External

app

NB API

Core methods

SwitchCONTROL PLANE

…

SB API

Data stores

Forwarding Devices

Northbound API

DATA PLANE …

End
host End

host

End
host…

APPLICATION PLANE

Southbound API

APPLICATION PLANE

End Hosts

§ SDN centralizes
decisions into an
SDN controller

§ SDN controller acts
as a network
operating system

§ Network
applications (apps)
extend functionality

SDN Overview

2

§ IEEE S&P magazine, 2017
– “Attacks against SDN controllers

and … malicious controller
apps are probably the most
severe threats to SDN.”

– “Dynamic configurations make
it more difficult for defenders to
tell whether the current or past
configuration is intended…”

State of SDN Security

3

Need for greater insight into
network decision-making

among apps

RBAC in Control Plane

4

Current solutions rely on role-based access control (RBAC)

SDN
controller

(control plane)

Malicious
network app (a1)

Host tracking
network app (a2)

Host manager

Host data
store

Flow rule manager

Flow rule
data store

SDN
data
plane

No permissions to
add flow rules

directly X

RBAC Policy:
• a1: HOST_READ, HOST_WRITE
• a2: HOST_READ, HOST_WRITE,

FLOWRULE_READ,
FLOWRULE_WRITE

RBAC Limitations

5

SDN
controller

(control plane)

Malicious
network app (a1)

Host tracking
network app (a2)

Host manager

Host data
store

Flow rule manager

Flow rule
data store

SDN
data
plane

Add fake host

RBAC is insufficient because it does not track information flow

RBAC Policy:
• a1: HOST_READ, HOST_WRITE
• a2: HOST_READ, HOST_WRITE,

FLOWRULE_READ,
FLOWRULE_WRITE

§ Formalize cross-app poisoning (CAP)
§ Perform static analysis of apps to find CAP gadgets
§ Incorporate information flow control (IFC) in

control plane
§ Apply data provenance techniques to track

information flow and enforce IFC with minimal
additional latency (PROVSDN)

Approach

6

High level goal: Track information flow
within the SDN control plane

§ Attacker objective: arbitrarily install flow rules
to affect data plane connectivity

§ Defender objective: prevent CAP attacks even
after RBAC has been applied

§ System assumptions:
– SDN controller is trusted and adequately secured
– Apps may originate from third parties; untrusted
– Attacker controls a least-privileges app

Threat Model

7

§ IFC integrity problem
§ Model RBAC policy with

apps, control plane’s data
structures (objects), and
read and write
permissions (edges)

Cross-App Poisoning (CAP)

8

App a1

Object o1

a o

a o Read
permission

CAP Semantics

Example with
RBAC Policy

App a2

Object o2

Write
permission

Goal: Find paths from apps
to objects that are not

directly connected

CAP in ONOS

9

ONOS app

ONOS object
(data structure)

CAP for (Security-Mode)
ONOS with Least-Privileges

RBAC Policy

Strong connectivity
shows potential highly

dependent data

CAP in ONOS

10

• 63 apps (excluding test app)
• 212 protected methods in

39 manager classes

Strong connectivity
shows potential highly

dependent data

§ Writes may not always
causally depend on reads

§ Use static analysis
§ Identify CAP gadgets that

allow flow from a
permissioned data source
to a permissioned data sink

§ Assume the attacker uses a
triggering app to start

CAP Gadgets

11

Source

Sink

Sources and sinks in ONOS
forwarding app fwd

CAP Gadgets in ONOS

12

Attackers can leverage other data structures to
affect flow rules without flow rule permissions

Switch Switch

External
Apps

SD
N

 C
o

n
tro

ller

Core
Internal app

modules

Internal app

Internal app

…

External
app

External
app

NB API

Core methods

SwitchCONTROL PLANE

…

SB API

Data stores

Forwarding Devices

Northbound API

DATA PLANE …

End
host End

host

End
host…

APPLICATION PLANE

Southbound API

APPLICATION PLANE

End Hosts

PROVSDN

Collector

Online
reference
monitorIFC policy

Provenance
graph Protected access

1
3

4

5

6
2

7

§ Use data
provenance to
record control
plane state

§ Online reference
monitor
enforces IFC

§ Implemented
on ONOS

PROVSDN

13

fwd

trigger PacketContext
type = PacketIn

PacketContext
type = PacketIn

trigger:attack
wasGeneratedBy

ForwardingObjective

fwd:installRule
wasGeneratedBy

was
Associated

With
used

fwd:callback

was
Associated

With
used

was
Associated

With
wasInformedBy

§ Use triggering app trigger
to modify an incoming
packet before being received
by forwarding app fwd

§ Label: trigger as low
integrity and fwd as high
integrity

§ Policy: prevent low from
flowing to high

Attack Evaluation

14

Provenance graph
generated by PROVSDN

PROV
Agent

PROV
Entity

PROV
Entity

PROV
Entity

PROV
Activity

PROV
Activity

PROV
Activity

PROV
Agent

§ Average latencies:
– Without PROVSDN: 11.66 ms
– PROVSDN, no IFC: 28.51 ms
– PROVSDN with IFC: 29.53 ms

Performance Evaluation

15

Acceptable latency when
amortized over long flows

§ We analyzed the IFC integrity problem in SDN
control planes by investigating information flow

§ We proposed a model to identify cross-app
interactions as vectors for potential attacks and
found where they existed in ONOS as a case study

§ We proposed a data provenance approach with
PROVSDN to record control plane state evolution and
enforce IFC in an online reference monitor

§ We implemented PROVSDN in the ONOS controller

Summary

16

§ Thanks for listening!
§ Ben Ujcich

E-mail: ujcich2@illinois.edu
Web: http://ujcich2.web.engr.illinois.edu/

Questions?

17

This material is based upon work
supported in part by the National
Science Foundation under Grant Nos.
CNS-1657534 and CNS-1750024. Any
opinions, findings, and conclusions or
recommendations expressed in this
material are those of the author(s) and
do not necessarily reflect the views of
the National Science Foundation.

Website CAP Paper

Backup Slides

18

§ JavaParser to build abstract syntax tree (AST)
§ Sources and sinks derived from analysis of

where permissioned methods were called in
apps

§ Field-sensitive inter-procedural data flow
analysis

Static Analysis for ONOS

19

W3C PROV Data Model

20

Source: W3C. ” PROV-O: The PROV Ontology”,
https://www.w3.org/TR/prov-o/

W3C PROV Semantics

21

PROVSDN Microbenchmarks

22

§ Availability-based attacks à can still audit past
actions to influence policy-making process

§ Separation of memory enforcement à redesign
controllers

§ Language-based limitations
– C/C++ controllers
– Python controllers
– Java controllers

Limitations

23

