Automated Attack Discovery in TCP Congestion
Control Using a Model-guided Approach

Endadul Hoque'
Florida International University
ehoque @fiu.edu

Samuel Jero
Purdue University
sjero@purdue.edu

Abstract—One of the most important goals of TCP is to ensure
fairness and prevent congestion collapse by implementing conges-
tion control. Various attacks against TCP congestion control have
been reported over the years, most of which have been discovered
through manual analysis. In this paper, we propose an automated
method that combines the generality of implementation-agnostic
fuzzing with the precision of runtime analysis to find attacks
against implementations of TCP congestion control. It uses a
model-guided approach to generate abstract attack strategies, by
leveraging a state machine model of TCP congestion control to
find vulnerable state machine paths that an attacker could exploit
to increase or decrease the throughput of a connection to his
advantage. These abstract strategies are then mapped to concrete
attack strategies, which consist of sequences of actions such as
injection or modification of acknowledgements and a logical time
for injection. We design and implement a virtualized platform,
TCPWN, that consists of a a proxy-based attack injector and
a TCP congestion control state tracker that uses only network
traffic to create and inject these concrete attack strategies. We
evaluated 5 TCP implementations from 4 Linux distributions and
Windows 8.1. Overall, we found 11 classes of attacks, of which
8 are new.

I. INTRODUCTION

TCP is the protocol that underlies most of the Internet
traffic including encrypted traffic via TLS and HTTPS. In
addition to reliable and in-order data delivery, TCP has two
critical goals — efficient delivery based on network conditions
and fairness with respect to other TCP flows in the network.
These two goals are achieved by using congestion control
mechanisms that cause a sender to adapt its sending rate to the
current network conditions (e.g., network congestion) or to the
receiver’s processing resources (e.g., slow receiver). Without
congestion control, the network can enter a condition where the
majority of sent data is eventually dropped, known as conges-
tion collapse; such a collapse occurred on the Internet in 1986,
causing throughput to drop by a factor of a thousand [20].

TCP congestion control relies on acknowledgement packets
(see Appendix A for details) from the receiver to explicitly

T This work was done while Endadul Hoque was at Northeastern University

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA

ISBN 1-1891562-49-5

http://dx.doi.org/10.14722/ndss.2018.23115

www.ndss-symposium.org

David Choffnes, Alan Mislove and Cristina Nita-Rotaru

Northeastern University
{choffnes,amislove,crisn } @ccs.neu.edu

provide the sender with correct information about the number
of data bytes received (and implicitly about the real network
conditions). However, TCP does not have any cryptographic
mechanisms to ensure authentication and integrity of the sent
packets, including acknowledgments. Application-layer secure
protocols such as TLS provide no protection for TCP headers
or TCP control messages, and network-layer secure protocols
such as IPsec [23] require separate infrastructure and protect
only up to the tunnel termination point. Thus, an attacker that
can intercept acknowledgment packets can modify them with-
out being detected by the intended recipient, who will blindly
trust the information. TCP has a protection mechanism against
packet injection in the form of a sequence number included
on each packet. However, numerous attacks demonstrate that
this protection mechanism can be bypassed by blind attackers
performing TCP sequence guessing [33], [32], [10], [18] or by
off-path or on-path attackers that can observe the target stream.
Thus, an attacker can also inject well-crafted acknowledgment
packets into a TCP stream without detection. By creating such
crafted acknowledgments that propagate malicious information
about the data received, an attacker can manipulate TCP
congestion control into sending data at rates that benefit
the attacker. For example, by creating an acknowledgement
that acknowledges data packets prior to receiving them and
injecting it into a target stream, an adversarial TCP receiver
can persuade the sender to increase its sending rate beyond the
rate prescribed by correct congestion control, possibly forcing
the network into congestion collapse [37].

Several manipulation attacks against TCP congestion con-
trol have been discovered; some of these attacks use external
data flows to create the impression of congestion [26], [25]
and others use acknowledgement packets to directly mislead
the congestion control mechanisms [22], [37], [12], [2]. These
attacks are more subtle and difficult to detect than traditional
crash or control-hijacking attacks. Acknowledgement-based
attacks, in particular, do not raise suspicions as long as the
packets are consistent with the receiver’s state (unlike data
that might not assemble properly at the application level). We
focus on attacks against congestion control created through
maliciously crafted acknowledgement packets (by fabrication
of new ones or modification of existing ones) and refer to them
as manipulation attacks.

Manipulation attacks on congestion control can have severe
implications such as financial loss. Consider an attacker who
wishes to degrade video quality and streaming experience for a
subset of Netflix users. While Netflix recently began to encrypt
all of its video traffic with TLS [40], TLS relies on TCP to

transfer data across the network. As a result, an attacker can
simply launch an attack misleading TCP into believing that the
network is congested. This will cause TCP to repeatedly slow
down its sending rate, causing rebuffering events and reduced
video quality for any Netflix user subjected to this attack. Due
to poor streaming experience, the users may consider turning
to other video providers.

Previous work on attacks against TCP congestion control
relied mainly on manual analysis. The only work we are aware
of that used automation for finding attacks in TCP congestion
control implementations is the work in [24] which relies on
the user to provide a vulnerable line of code and then performs
static analysis. The vulnerable line of code from the user is
critical to ensure scalability of the approach. In addition, the
method is restricted to a specific implementation, language,
and operating system.

In this paper, we aim to automatically discover manipula-
tion attacks on congestion control without requiring the user to
provide any vulnerable line of code and without being depen-
dent on specific implementation, language, or operating system
characteristics. Protocol fuzzing [27], [1], [16] is a well-known
approach where packet contents are either randomly generated
and injected into the network or randomly mutated in-transit.
However, without explicit guidance, given a vast input space,
fuzzing fails to concentrate on relevant portions of the source
code (i.e., for inducing protocol-compliant behaviors).

Previous work on testing TCP connection establishment
[21] used the protocol’s connection state machine to guide the
fuzzing process and prune unnecessary executions. However,
unlike attacks against connection establishment which usually
consist of one action, attacks against congestion control require
a potentially long sequence of actions spanning several states
and transitions, where each action might trigger a new state,
which in turn might require a different attack action. Automati-
cally discovering these combinations at runtime is not practical
for scalability reasons. For example, using the approach in
[21] for congestion control would require a search space of
about 1.2 x 1024 cases, assuming only 5 types with 4 parameter
choices for creating the malicious acknowledgements and 4
possible states for injecting them. Even limiting this to test at
most one manipulation at a time in each state would generate
194,480 cases, which is still impractical for testing in a real
network.

To address this scalability challenge while still guarantee-
ing that we test relevant portions of the code, we use model-
based testing (MBT) [43], an approach that generates effective
test cases based on a model of the program. The approach uses
a model, an abstract representation of the desired behavior
of the program that is typically derived from specifications,
to derive functional tests. These functional tests contain the
same level of abstraction as the model, and are converted to
concrete test cases to be tested against the implementation.
MBT does not require the source code and guides the testing
to concentrate only on relevant portions of the source code.

Our approach. We propose to automatically find manipu-
lation attacks by guiding a protocol fuzzer with concrete attack
actions derived from abstract attack strategies, which are
obtained using a model-guided technique inspired by model-
based testing. Our model is a finite state machine (FSM) that

captures the main functionality of several types of congestion
control algorithms used by deployed TCP implementations and
is constructed from RFC specifications. We use this abstract
model to generate abstract attack strategies by exploring the
different paths in the FSM that modify state variables control-
ling throughput, and thus can be leveraged to mount an attack.
We then map these abstract strategies to concrete attack strate-
gies that correspond to real attacker capabilities; a concrete
strategy consists of acknowledgment-packet-level actions with
precise information about how the packets should be crafted
and the congestion control states in which these actions should
be performed. Our approach provides maximum coverage of
the model of congestion control while generating an optimum
number of abstract strategies. The number of concrete attack
strategies is bounded by the number of malicious actions
that describe an attacker’s capabilities. We consider off-path
attackers and on-path attackers; both can sniff traffic and obtain
TCP sequence numbers and data that has been acknowledged
or sent. However, there is one fundamental difference, an off-
path attacker can only inject malicious acknowledgements, but
cannot prevent the correct ones from reaching the receiver; an
on-path attacker can modify acknowledgements such that the
victim sees only acknowledgments from the attacker.

We created and implemented a platform, TCPWN, to
create and inject concrete attack scenarios. The platform
combines virtualization (to run different implementations in
their native environment), proxy-based attack injection, and
runtime congestion control state machine tracking (to inject
the attacks at the right time during execution). Our state
machine tracking at runtime does not require instrumenting the
code. Specifically, we use a general congestion control state
machine (e.g., TCP New Reno) and infer the current state of
the sender by monitoring network packets exchanged during
fuzzing. While this option is less accurate than extracting
the state machine from an implementation’s code, it is less
complex and more general. TCPWN is publicly available at
https://github.com/samueljero/TCPwn.

Our model-based attack generation finds 21 abstract strate-
gies that are mapped into 564 (for on-path attackers) and 753
(for off-path attackers) concrete strategies. Each strategy can be
tested independently and takes between 15 and 60 seconds. We
evaluated 5 TCP implementations from 4 Linux distributions
and Windows 8.1, all using congestion control mechanisms
that can be modeled as the finite state machine we used to
generate abstract strategies. Overall, we found 11 classes of
attacks, of which 8 were previously unknown.

The rest of the paper is organized as follows. First, we
describe the TCP congestion control state machine model we
assume in this work, in Section II. We then describe our
attacker model in Section III. We provide details on the design
of our system in Section IV and describe our implementation
in Section V. We summarize our results in Section VI and
present related work in Section VIIL. Finally, we conclude the
paper in Section VIII.

II. TCP CONGESTION CONTROL MODEL

We present the finite state machine (FSM) for TCP con-
gestion control considered in this work. This FSM is based
on the classic TCP New Reno [19], [4]. We then discuss op-

ACK && New

&& cwnd + MSS >= ssthresh

dupACKctr=0

INIT
J— cwnd = cwnd + MSS

cwnd=10
dupACKctr=0
ssthresh = MAX_INT
rto_timeout = 200ms
send 10 new packets
start rto timer

reset rto timer

ACK && New
&& cwnd + MSS < ssthresh

ACK
dupACKctr=0 Send new packet
cwnd = cwnd + MSS reset rio imer
if have new RTT sample,
update rto_timeout

reset rto timer

send new packets, as allowed

Exponential
Backoff

RTO Timeout
ssthresh = cwnd/2

cwnd=1

rto_timeout = 2*rto_timeout

reset rto timer
retransmit last unacked packet

ACK && Dup
&& dupACKctr <2

RTO Timeout

cwnd=1
rto_timeout = 2*rto_timeout
reset rto timer
retransmit last
unacked packet

dupACKctr++
reset rto timer

=]

s
cwnd=1

ACK && Dup 8&
dupACKetr + 1 == 3

reset rto timer
retransmit last
BE— unacked packet
dupACKctr = 0

ssthresh = cwnd/2

cwnd = ssthresh + 3
high_water= last packet sent
reset rto timer

retransmit last unacked packet

ACK && Dup
cwnd = cwnd + MSS

reset rto timer
send new packets, as allowed

Fig. 1. TCP New Reno State Machine

tional improvements and variants like SACK [8], DSACK [7],
TLP [17], PRR [28], FRTO [35], and others [34], [13].

A. Finite State Machine Model

At a high level, the congestion control of TCP New Reno
consists of four phases: (1) slow start, (2) congestion avoid-
ance, (3) fast recovery, and (4) exponential backoff. During the
slow start phase the sender is probing the network to quickly
find the available bandwidth without overloading the network;
once such bandwidth is found, the sender enters a congestion
avoidance phase in which the sender can send without causing
congestion; in case of congestion and data loss, fast recovery
or exponential backoff reduce the rate at which data is sent.
The fast recovery phase is intended for less significant events
where the beginning of congestion is detected through lost
packets and acknowledgments, while the exponential backoff
phase deals with more significant events where congestion is
detected by the expiration of a large timeout. We present the
finite state machine model assumed for congestion control in
Figure 1. Below we describe the associated events, variables,
and states.

(1) Events. TCP congestion control relies on two events
for its operation, the reception of an acknowledgement (ACK)
and the occurrence of a timeout (RTO Timeout):

ACK. This event denotes that an acknowledgement packet
was received by the sender. We describe in detail in Appendix
A these TCP acknowledgments. TCP acknowledgements are
byte-based and cumulative, i.e. the receiver acknowledges the
highest byte of data at which all prior data has been received.
A duplicate acknowledgment, and particularly three duplicate
acknowledgments, are used to signal timely information about
the network conditions.

may update rto_timeout

send new packets, as allowed

rto_timeout = 2*rto_timeout

Recovery

ACK && Dup &&
dupACKetr < 2

dupACKctr++
reset rto timer

Congestion ACK &8 New
Avoidance

dupACKctr=0

cwnd = cwnd + MSS*(MSS/cwnd)

If have new RTT sample, update rto_timeout
reset rto timer

send new packets, as allowed

RTO Timeout

ssthresh = cwnd/2

cwnd=1

rto_timeout = 2*rto_timeout
reset rto timer

retransmit last unacked packet

ACK && New &&
pkt.ack >= high_water

ACK && Dup &&
dupACKctr + 1 ==3

cwnd = sshthresh
dupACKctr = 0 SR
reset rto timer dUPACKatr=0

ssthresh = cwnd/2

cwnd = ssthresh + 3
high_water= last packet sent
reset rto timer

retransmit last unacked packet

NOTE:
Sender is allowed to send new packets when:
(last packet sent - last packet acked) <= cwnd

Fast

ACK && New && pkt.ack < high_water

T NOTE:

o timer is stopped if all data has been acknowledged
and started again if data is later sent

cwnd = cwnd - data ackowledged
reset rto timer

retransmit last unacked packet
send new packets, as allowed

RTO Timeout. This event denotes that a timeout occurred
when data was outstanding and no acknowledgements were
received for several Round-Trip-Times (RTTs). This indicates
more severe conditions in the network since the last acknowl-
edgement. This timer is started when new data packets are
sent, reset on every acknowledgement, and stopped if all data
has been acknowledged.

(2) Variables. The variables capturing the main functional-
ity of congestion control can be grouped into three categorizes:
variables related to the amount of data to be sent (cwnd
and ssthresh), variables keeping track of acknowledged
data (dupACKctr and high_water), and variables controlling
timeouts (rto_timeout).

Congestion window — cwnd. This variable represents the
number of bytes of data that TCP is allowed to have in the
network at any given time. It is modified by TCP congestion
control to increase or decrease the sending rate in response to
network conditions.

Slow start threshold — ssthresh. This variable indicates
the value of the congestion window cwnd at which TCP
switches from slow start to congestion avoidance. TCP uses
this information later in the connection by growing the window
exponentially up to ssthresh after a timeout or idle period.

Duplicate ACK - dupACKctr. This variable tracks the
number of duplicate acknowledgements received in slow start
and congestion avoidance. Receiving three duplicate acknowl-
edgements triggers a transition to fast recovery.

Highest sequence sent — high water. This variable
records the highest sequence number sent prior to entering
fast recovery. Only once this sequence number has been
acknowledged (or a timeout occurred) will fast recovery be
exited.

RTO Timeout — rto_timeout. This variable indicates
the current length of the RTO Timeout. It is usually set to
maxz(200ms,2 « RTT + 4 « RTT_Variance). If the RTO
timer expires, this value is doubled, resulting in an exponential
backoff.

(3) States. We can now describe the state machine from
Figure 1. The states capture the four high-level phases de-
scribed before.

Slow Start. In this state TCP rapidly increases its sending
rate, as indicated by the congestion window cwnd, in order to
quickly utilize the available bandwidth of the path while not
overloading the network with a huge initial burst of packets.
For each acknowledgement acknowledging new data, cwnd
is incremented by MSS (Maximum Segment Size), which
results in a doubling of the sending rate every RTT. TCP
exits slow start on the RTO Timeout, after three duplicate
acknowledgements—which indicate a lost packet—, or when
the congestion window cwnd becomes bigger than the slow
start threshold ssthresh. This last condition indicates that
TCP is approaching a prior estimate of the fair-share connec-
tion bandwidth. TCP connections start in the slow start state
with ssthresh set to MAX_INT, such that slow start is only
exited on timeout or packet loss, and cwnd set to 10, allowing
a burst of ten packets to be sent initially.!

Congestion Avoidance. In this state TCP is sending close
to its estimate of the available bandwidth while also slowly
probing for additional bandwidth. Every RTT cwnd is in-
creased by one MSS sized packet. In practice, this is done
by increasing cwnd by a small amount((M SS % cwnd) /M S.S)
for every new ACK received. TCP exits congestion avoidance
either on an RTO Timeout or after receiving three duplicate
acknowledgments, indicating a lost packet.

Fast Recovery. In this state, TCP is recovering from a
lost packet indicated by three duplicate acknowledgements.
TCP assumes that packet loss signals network congestion, so
it cuts its sending rate in half by halving cwnd, and retransmits
the last unacknowledged packet. ssthresh is set to this new
value of cwnd, providing an approximate bandwidth estimate
in case of a timeout. TCP remains in fast recovery until all
data outstanding at the time it entered fast recovery has been
acknowledged or an RTO timeout occurs. This is achieved by
saving the last packet sent in high_water upon entry and
exiting once this packet has been acknowledged.

Exponential Backoff. In this state, TCP is retransmitting a
lost packet each time the RTO timer expires. With each timer
expiration, rto_timeout is doubled, resulting in an exponen-
tial backoff between retransmissions. This state is entered from
any other state when the RTO timer expires, indicating that
data is outstanding in the network but no acknowledgements
have been received in rto_timeout seconds (at least 2 RTTSs).
This situation indicates the loss of a large number of packets
and, likely, significant changes in network conditions. As a
result, ssthresh is set to half of cwnd, cwnd is set to 1
MSS, and the last unacknowledged packet is retransmitted.
TCP remains in this state, retransmitting this packet each time
the RTO timer expires, until an acknowledgement is received,
at which point it transitions to slow start.

I'This initial window was originally 2-4 packets [4], but has been increased
to 10 packets in more recent standards [15] and implementations.

B. Variations and Optimizations

The classic TCP New Reno congestion control algo-
rithm we described above has seen a number of vari-
ations and optimizations over the years. These include
SACK [8], DSACK [7], TLP [17], PRR [28], CUBIC [34],
and RACK [13]. These variations and optimizations consist
of fairly minor changes to the basic New Reno algorithm.
SACK [8], for example, provides the sender with additional
information about received packets and uses this information to
determine when to enter fast recovery. The logic of the decision
does not change: fast recovery is entered when three packets
above a loss have been received. SACK simply uses a more
accurate method to detect this condition. Similarly, PRR [28]
modifies New Reno by adopting paced packet sending during
the self-loop in fast recovery. TLP [17] introduces a new, faster
timeout state before exponential backoff. CUBIC TCP [34]
changes precisely how cwnd is increased in congestion avoid-
ance and decreased during fast recovery.

While these changes affect the performance of TCP in
certain network conditions, they follow the same phases of
TCP congestion control. In this work, our attack generation
models all TCP congestion control as classic TCP New Reno
due to difficulty inferring more detailed congestion control
state from network traffic alone (see Section IV-D). Never-
theless, we successfully tested modern Windows and Linux
TCP stacks with many of these variations and optimizations,
and we successfully identified attacks against them.

III. ATTACK MODEL

In this section we discuss the attacker capabilities and
congestion control attacks that we consider in this work.

A. Attacker and Attack Goals

A typical attacker might be a botnet trying to enhance
the power of a DDoS attack by using increased throughput
attacks to render TCP flows insensitive to congestion. This
gives the attacker the power of a UDP flood with the ubiquity
of TCP traffic; perfect for the coremelt attack [41]. Alternately,
a nation-state actor could launch decreasing throughput attacks
to discourage or prevent use of certain undesirable services.

Decreasing Throughput. In this case, the attacker manip-
ulates the congestion control algorithm of a target connection
such that it falsely detects congestion, resulting in a rate
reduction. This rate reduction can have significant impact at
the application level, especially for inelastic data streams like
streaming video.

Example. Consider the Blind Throughput Reduction At-
tack [12]. In this attack, the attacker sends spoofed invalid
acknowledgements to the target connection’s receiver, which
cause the receiver to send duplicate acknowledgements to the
sender. These duplicate acknowledgements, when received in
the congestion avoidance or slow start states, mislead the
sender about the existence of lost packets and the level of
congestion in the network, causing the sender to transition to
the fast recovery state and slow down (see Fig. 3). The sender
will continue to slow down as long as the attacker emits its
spoofed acknowledgements.

Increasing Throughput. In this case, the attacker manip-
ulates the congestion control algorithm such that it perceives
significant available bandwidth along with low latency and
loss. As a result, the sender rapidly increases its sending rate
beyond what is fair to competing connections. Any actual
congestion in the network will not be observed, which may
be used to damage or deny service to target links or to other
connections sharing the same links.

Example. Consider the Optimstic Ack Attack [37]. In this
attack, the receiver repeatedly sends acknowledgements for
data that has not actually been received yet in order to
dramatically increase its sending rate and render the sender
insensitive to actual congestion in the network. Acknowledging
data not yet received in the congestion avoidance, slow start,
or fast recovery states misleads the sender about the data that
has been received and the RTT of the connection. As a result,
the sender does not react to actual congestion in the network
and is unfair to any competing connections.

Target Flows. Any TCP flow that sends more than an
initial window (10 packets, about 15KB) of data is vulnerable
to these attacks. In this work, we focus on bulk data transfers
because they result in the widest array of attacks, are easiest
to automate, and easiest to explain; however, these attacks are
not restricted to such flows. Short transfers, like web pages,
are also vulnerable to attacks on congestion control, and flows
with a limited bitrate, like streaming video, are vulnerable to
decreasing throughput attacks. Interactive flows are vulnerable
if their sending rate is limited by congestion control and not
by the availability of data from the application.

B. Attack, Strategy, Action

Congestion control constrains the sender’s data-transfer
rate, primarily through acknowledgements. Thus, we consider
attacks conducted through acknowledgement packets.

Congestion control manipulation attacks. These are attacks
conducted by manipulation of TCP acknowledgements in order
to mislead congestion control about current network conditions
and cause it to set an incorrect sending rate. They can result in
either increasing or decreasing the throughput, and sometimes
in connection stall. In order to achieve the high-level goals of
manipulating congestion control, an attacker applies an attack
strategy.

Attack strategy. Given a TCP stream, where a sender sends
data to a receiver, we define a concrete attack strategy as a
sequence of acknowledgment-based malicious actions and the
corresponding sender states (as described in Fig. 1) when each
action is performed.

Malicious actions. A malicious action itself requires an
attacker to (1) craft acknowledgements by leveraging protocol
semantics to mislead congestion control, (2) infer the state at
the sender, and (3) inject the malicious acknowledgment on
the path and in the target stream. For example, a malicious
action can be to craft an acknowledgment that acknowledges
data not yet received and inject it when the sender is assumed
to be in congestion avoidance.

Crafting malicious acknowledgements. TCP does not use
any cryptographic mechanisms to ensure authentication and
integrity of packets; thus, an attacker can fabricate packets

or modify intercepted ones with malicious payload. In order
to intercept, the attacker will need to be on the path and
be able to sniff the target stream. Moreover, these crafted
acknowledgement are semantic-aware, that is, the attacker is
aware of the meaning of the bytes acknowledged. For example,
in the example above, an attacker will need to know the highest
byte of data that was acknowledged in order to acknowledge
data that has not been received yet.

Inferring the state machine at the sender. We assume that
the attacker can observe the network traffic, but it does not
have access to the source code and thus cannot instrument it.

Injecting malicious acknowledgments. This requires an
attacker to spoof packets and have knowledge of the TCP se-
quence number, the only protection TCP has against injection.
We do not consider blind attackers in this work, since, while
they can inject spoofed packets into the network, they have no
knowledge of sequence numbers or data being acknowledged
and thus are restricted to guessing this information. We dis-
tinguish between off-path and on-path attackers. An off-path
attacker can observe packets in the target connection or link
and inject spoofed packets. For example he can sniff traffic
on the client’s local network — e.g., coffee house Wi-Fi. An
on-path attacker can intercept, modify, and control delivery of
legitimate packets in some target connection or link, as well
as inject new spoofed packets. For example, such an attacker
can be a switch on the path between client and server.

IV. TCPwWN DESIGN

In this section we describe the design of TCPWN, our
automated platform for finding attacks on congestion control.
We first provide a high-level overview, then discuss our model-
guided attack strategy generation and congestion control pro-
tocol state tracking.

A. Overview

We motivate our approach with the Optimistic Ack [37]
attack. Consider its interactions with the congestion control
state machine as shown in Fig. 3. In order to be successful, the
attacker must inject packets with an acknowledgement number
above the real cumulative acknowledgment number and below
the highest sequence number that the sender has sent, and it
has to do this in either the congestion avoidance, slow start,
or fast recovery states. Each time the sender receives one of
these new acknowledgements in those states, it causes a self-
loop transition (in blue in Fig. 3), increasing the congestion
window cwnd, which directly controls the sending rate.

Finding all these transitions (i.e. that impact the sending
rate at runtime) is challenging because of the large search
space. We address this challenge by using a model-based attack
strategy generation that finds all possible attack strategies
in a model of the congestion control (i.e. shown in Figure
1). We refer to these as abstract strategies. To test them in
real implementations, we translate them to concrete attack
strategies, obtained by mapping the abstract strategies to attack
actions corresponding to attacker capabilities and consisting of
specific content for a malicious packet and the state in which
it will be injected. An attack injector takes these concrete
packet-based attack strategies and injects them in our testing

Basic attack [
actions map

Abstract
Strategy
Generator

Vulnerable

Attack Goal Paths

Concrete
Strategy
Generator

oo
Attack
Packets

{Pg, 01,7
Basic Action
Sequences

Attack
Injector

Traffic Testing

State Environment

Traffic

Congestion Control
Model (FSM)

Reports on
Attacks

Fig. 2. Design of TCPWN

New ACKS

Congestion
Avoidance

New ACKs

Fig. 3. Interactions between New Reno congestion control and the Optimistic
Ack attack. Transitions in blue increase throughput while those in red decrease
throughput.

environment during an actual execution of the target imple-
mentation. Our attack injector requires information about the
current congestion control state of the sender. A state tracker
determines this current protocol state so that actions can be
performed as specified by the strategy. After the execution of
each attack, our system collects logs that capture performance
metric(s). By comparing the resulting performance with the
expected baseline performance, TCPWN identifies whether the
strategy indeed leads to a successful attack. Fig. 2 shows the
conceptual design of our system, TCPWN.

Testing strategies with real implementations provides
strong soundness properties since any strategy that TCPwn
identifies as an attack caused noticeable performance changes
in a real TCP connection of the implementation under test.
This prevents most classes of false positives, except tests with
performance outside of the considered normal range (> 2
standard deviations from average). Our completeness is limited
by the accuracy of the congestion control model and state
tracking. Here, we choose to trade off some completeness for
the ability to test many implementations and use a generalized
congestion control model and inferred state tracking.

Example for TCPWN attack generation. We demonstrate
the attack strategy generation approach using the same example
as above, where the attacker’s goal is to increase the sending
rate; this can also be expressed as an increase in the sender’s
cwnd variable. Our abstract strategy generator identifies each
of those paths in the FSM (Fig. 1) containing at least one
transition that increments the cwnd variable. One of the
identified paths (say, P) looks as follows:

P: SlowStart — FastRecovery — CongestionAvoidance O

where the self-loop in CongestionAvoidance increments cwnd

4—12’4— 4—

Tracker

Analysis Logs

(see Fig. 1). An abstract strategy S is a projection on the
condition of each transition along Pand is represented as the
following sequence of (state, condition) pair:

(In: SlowStart, Condition: ACK && Dup && dupACKctr>3)

(In: FastRecovery, Condition: ACK && New && pkt.ack >
high_water)

(In: CongestionAvoidance, Condition: ACK && New)™

This strategy S dictates that when the sender is in SlowStart
and is sending data to the receiver, the attacker can send 3
duplicate ACKs to the sender so that it moves to FastRecovery.
Next the attacker can send the sender 1 new ACK (that
acknowledges all the outstanding data). As a result, the sender
moves to CongestionAvoidance, and the attacker can keep
on sending new ACKs that optimistically acknowledge all
outstanding data even if the receiver has not received it yet.
+ (the superscript) signifies that the attacker can apply this
segment of S repeatedly.

TCPWN maps S to several concrete strategies that can be
directly tested inside the testing environment running the given
implementation. TCPWN relies on a map which associates
the abstract network conditions to concrete basic actions.
For S, TCPWN generates 72 Concrete strategies, based on
actions mimicking both off-path and on-path attackers. One
such concrete strategy is:

(In: SlowStart, Action: 3 x Inject Dup-Ack)
(In: FastRecovery, Action: Inject Pre-Ack)
(In: CongestionAvoidance, Action: Inject Pre-Ack)™

This concrete strategy dictates that when the sender is in
SlowStart, the attacker can use the Dup-Ack basic action to in-
ject 3 duplicate ACKSs. Similarly, for acknowledging all the out-
standing data in the next step, the attacker can use the Pre-Ack
basic action. Once the sender is in CongestionAvoidance, the
attacker can repeatedly apply Pre-Ack. We will describe all
supported basic actions in §IV-C.

B. Abstract Strategy Generation

We now describe in detail the core of our approach. We
observe that a successful attack will (1) trigger a transition
that causes an increase or decrease in the congestion window
cwnd and (2) traverses a cycle in the congestion control state
machine.

Changes to cwnd. The congestion window, cwnd, adjusts
the sending rate of TCP to avoid congestion collapse and

provide fairness. 2> Further, congestion control modifies cwnd
frequently during the course of its normal operation. These
modifications are done on many transitions of the congestion
control state machine and either increase or decrease cwnd
depending on the transition. As a result, an attacker can
increase or decrease cwnd, and therefore TCP’s sending rate,
merely by inducing TCP to follow specific normal transitions
in the congestion control state machine.

State Machine Cycles. Successful congestion control at-
tacks traverse a cycle in the congestion control state machine.
This is due to the highly dynamic and cyclical nature of
congestion control where a sender often traverses the same
set of states many times over the course of a connection and
multiple state transitions in a single second are common. As a
result, the impact on cwnd from a single transition is quickly
diminished by other transitions. For an attack to be effective
and achieve measurable, lasting impact, an attacker has to
frequently induce TCP to follow some desirable transition.
Such a series of desirable transitions will form either a cycle or
a unique path in the state machine. Given the relatively small
size (under 10 states) of the congestion control state machine
and the frequency of state transitions, anything but the shortest
connections would require a cycle to achieve a sufficiently long
series of desirable transitions.

Note that these characteristics are necessary but not suffi-
cient for an attack on congestion control. For instance a cycle
may contain two manipulations to cwnd that balance each other
out, or a cycle may not be triggerable by the attacker.

Our abstract strategy generator takes as input an FSM
model of congestion control and a description of the desirable
transitions. In our case, a desirable transition is one that
modifies cwnd. It outputs a list of all paths with cycles that
contain a desirable transition and can therefore be used by an
attacker to achieve his goal. This list includes the transitions in
each path as well as the conditions that cause each transition.
We use a modified depth-first traversal to enumerate all paths
in the FSM. We formally define the abstract strategy generation
problem and our algorithm below.

State Machine Model. We define a model M describing
the state machine of the congestion control algorithm as a tuple
(S, N, V,C, A, 0,T). S is a finite set of states {sg,...,5n},
and the initial state is ¢ € S. N represents a finite set of
network events (e.g., ACK signifies the reception of a TCP
acknowledgment). V is a finite set of variables including both
some fields of a received packet and some program variables.
For instance, New means the received ACK acknowledges
some new data and cwnd indicates the program variable that
represents congestion window size. C represents a finite set
of conditional statements such that each element ¢ € C is a
quantifier-free first order logic (QF-FOL) formula [30] over V
(e.g., dupAckCtr < 2). A represents a finite set of assignment
statements (i.e., protocol actions) over a subset of V (e.g.,
“cwnd = 1” means the congestion window is set to 1). In

2This is true for all congestion control algorithms except Google’s new
BBR [11] congestion control. This includes Reno [4], New Reno [19],
CUBIC [34], Compound TCP [39], and Vegas [9], among others. However,
BBR does maintain a variable containing the explicitly computed allowed
sending rate, which has similar properties for our purposes. As BBR’s public
release was concurrent with this work, we do not consider it further here.

addition, N, V, C, and A are pairwise disjoint. 7 represents
the transition relations such that 7 C S x A/ x C x 24 x S.

Lety: 7T — Sand £ : T — S be two maps indicating the
source and target of a transition. For example, if a transition
t € T begins at s, and ends at s, then ¥ (t) = s and £(t) =
Se. Let \: T +— N x C and R : T — P(A) be two maps to
indicate the triggering conditions and the set of actions of a
transition, respectively. Now we define a path as follows.

Definition 1. Path: A path P in M is a sequence of pairs
of states and transitions ((Siy,tj,), (Sizstjy),- - (Sips i)
where k > 0; each s;, € S for 0 < z < k and s;, = o (the ini-
tial state); Wy [t;, € TAY(t;,) = si, NE(tj,) = Si,)] where
0<y<k-1L tj. € {T7L} and [w(tjk) = Siy, /\g(tjk) €
{8, L}]. In addition, ¥r,s[r # s — s;, # si, Ntj. # t;.],
where r,s € {0,1,... k}.

In other words, a path P starts at o and moves to the state
s;, by taking the transition ¢;,. By following the sequence, P
finally reaches at s;, . The last segment of P (i.e., (s;,,t},)) is
special as it determines the existence of a cycle. If P contains
a cycle, then [t;, # L At;, € T] and 3z[{(t;,) = si.),
where z € {0,1,...,k}. When P has no cycle, ¢tj, = L and
g(tjk) =1
Definition 2. Vulnerable path: Given a vulnerable action o €
A, a path P in M is a vulnerable path if P has a segment
(Siy.t5,) such that o € X(t;,), where x € {0,...,k} and
k>0.

Definition 3. Abstract strategy: Given a vulnerable path P
in M such that P = ((siy,tjy),---,(Si,,t5,.)) for some
k > 0, the corresponding abstract strategy S is defined as
(Sig) /\(tjo))a (Sila/\(tjl))v T (Su) /\(tjk)»r where A(tjx) €
N xC)ifty, € T or \tj,) = L ift;, = L for each
0<z<k.

Abstract Strategy Generator. Given M, a directed multi-
graph with cycles, and the attacker’s goal a € A, the
Abstract Strategy Generator aims to find all the vulnerable
paths in M with respect to a. We devise the algorithm shown
in Algorithm 1, which begins the search from the function
VulnerablePathFinder. Intuitively, the algorithm traverses
the entire graph in a depth-first fashion, starting at the initial
state o € S. For each transition ¢ € T such that ¥(t) = o,
the algorithm initializes a new path P, appends (o,t) to
P, and recursively continues its exploration of the subgraph
rooted at £(¢). For P, the recursion stops when it encounters
a cycle (line 13) or a terminating state (line 15). If any of
these stop conditions is met, the algorithm checks if P is a
vulnerable path with respect to «; if so, it adds P to the set
of the vulnerable paths (line 20). Unlike traditional depth-first
traversal, the algorithm restores the subgraph rooted at &(¢)
by marking it unvisited (line 28) in order to find all possible
vulnerable paths w.r.t. a. Upon termination, the algorithm
returns the set of vulnerable paths w.r.t. o (line 10) identified
during the exploration. This set of vulnerable paths contain our
abstract strategies. We generate our abstract strategies {S} by
taking projections on conditions of the transitions along each
path.

Algorithm 1: Abstract Strategy Generator

Input: Multigraph M = (S,N,V,C, A,0,T), ¥, &, A, R
and a vulnerable action a € A
Qutput: All vulnerable paths with respect to «

1 VulnerablePaths :== ()
/* to store all the vulnerable paths */

2 Function VulnerablePathFinder (M, «)
3 root = o /* initial state */
4 Mark root as visited
5 foreach rransition t such that ¢ (t) = root do
6 Create a new path P
7 P := P||(root,t) /* concatenating */
8 vi=£(t)
9 RecursiveSearch(v, P, a)
10 return VulnerablePaths
11 Function RecursiveSearch (v, P,)
/* search continue from v */

12 base_case := false
13 if v is already visited then // reached a cycle
14 L base_case = true
15 else if exists no t such that 1(t) = v then

/* v is a terminating state */
16 base_case := true
17 P = P| (v, 1) /* concatenating */
18 if base_case is true then
19 if P is a vulnerable path w.rt. o then
20 L VulnerablePaths := Vulnerable Paths U P
21 else
22 Mark v as visited
23 foreach rransition t such that ¥(t) = v do
24 v = E(t)
25 P =P /* creating a copy */
26 P = P||(v',1) /* concatenating */
27 RecursiveSearch(v’, P/, o)
28 Mark v as unvisited
29 return /* void */

C. Concrete Strategy Generation

An abstract strategy just specifies a path in the FSM that
can lead to an attack. However, there are usually several ways
in which this path can be concretely achieved at runtime.
Concrete strategy generation takes our abstract strategies and
converts them into sets of basic message-based actions that
can be applied by our attack injector in particular states of the
FSM.

Our concrete strategy generator considers each abstract
strategy individually and iterates through each transition in
that strategy. Each of these network conditions is mapped to
a basic action that the attacker can directly utilize to trigger
that network condition in that state. This results in a set of
(state,action) pairs which we call a concrete strategy. A
transition condition may be triggered by multiple basic actions,
in which case this mapping results in a set of basic actions that
could be applied in that state to cause the next transition. Our
generator creates one concrete strategy for each combination of
actions from these sets. Note that we require a domain expert

to provide the mapping of network conditions to basic actions
since it relies on domain knowledge. This mapping only needs
to be updated when the state machine model changes or new
actions are added; generating concrete actions for a given
implementation is completely automated.

We developed our set of basic actions based on an extensive
study of TCP and known congestion control attacks. We
consider two categories: injection of acknowledgements, which
captures the capabilities of an off-path attacker, and modifica-
tion of acknowledgements, which captures the capabilities of
an on-path attacker.

Injection of acknowledgements (off-path attacker). This
type of action injects new spoofed acknowledgement packets
for either the client or server of a target connection. We support
a number of different ways of injecting acknowledgements:

(1) Duplicate Acknowledgements (param: dup_no, delay,
offset) — Injecting many acknowledgements with the same
acknowledgement number as an apparent set of duplicate
acknowledgements. This enables an off-path attacker to slow
down a connection. This action assumes that target connec-
tion’s sequence and acknowledgement numbers are known or
can be guessed. Parameters control the number of duplicates
injected (2, 10, 1000), the spacing between these duplicates
(1ms), and offset from the current acknowledgement number
(0, 3000, 90000).

(2) Offset Acknowledgements (param: num, delay, data,
offset) — Injecting a series of acknowledgements with an
acknowledgement number offset from the legitimate acknowl-
edgement number. Acknowledges either less or more data than
is acknowledged by the receiver. This action assumes that
target connection’s sequence and acknowledgement numbers
are known or can be guessed. Parameters control the number
of acknowledgements injected (10000, 50000), the spacing
between these acknowledgements (1ms, 2ms), any bytes of
data included (0, 10), and any offset from the current acknowl-
edgement number (0, 100, 3000, 9000, 90000).

(3) Incrementing Acknowledgements (param: num, delay,
data) — Injecting a series of acknowledgements where the
acknowledgement number increases by a variable amount each
time. Congestion control expects these acknowledgements to
indicate the successful receipt of new data and will act accord-
ingly. This action assumes that target connection’s sequence
and acknowledgement numbers are known or can be guessed.
Parameters control the number of acknowledgements injected
(50000), the spacing between these acknowledgements (1ms),
and the amount the acknowledgement is incremented with each
packet (9000, 90000).

Modification of acknowledgements (on-path attacker).
This type of action changes the manner in which acknowledge-
ments for the sequence space are sent. We support a number
of manipulations to the sequence of acknowledgements for a
data stream:

(1) Division (param: data) — Acknowledge the sequence
space in chunks much smaller than a single packet. This splits
a single acknowledgement packet into many acknowledgement
packets that acknowledge separate ranges. A parameter con-
trols the number of bytes to acknowledge in a single chunk
(100).

(2) Duplication (param: dup_no) — Duplicate acknowl-
edgements of chunks of the sequence space repeatedly. A
parameter controls the number of duplicate acknowledgements
to create (1 ,4, 100). This breaks the assumption that each
acknowledgement received corresponds to a packet that left
the network.

(3) Pre-acknowledging (param: none) — Acknowledging
portions of the sequence space that have not been received yet.
This hides any losses, preventing slow downs, and effectively
shrinks the connection’s RTT, allowing faster than normal
throughput increases.

(4) Limiting (param: none) — Prevents the acknowl-
edgement number from increasing. This generates duplicate
acknowledgements but also prevents any new data from being
acknowledged. This is likely to stall the connection and lead
to an RTO.

D. State Tracker

In order to test a strategy against an implementation,
TCPWN needs to know that the state of the sender with respect
to congestion control. This is not an easy problem as there
are several implemented congestion control algorithms such as
Reno [4], New Reno [19], CUBIC [34], Compound TCP [39],
and Vegas [9]. Implementations may also choose to include
an Application Limited state, adjustable dupACKctr thresh-
olds, and optional enhancements like SACK [8], DSACK [7],
TLP [17], F-RTO [35], and PRR [28]. Additionally, we desire
to do this without modifying the sender or making assumptions
about what kind of debugging information it makes available.
Finally, key variables that determine the state of the sender
(like cwnd, ssthresh, and rto_timeout) are not exposed by
the sender and are not readily computable from network traffic.

To overcome these challenges, we choose to approximate
the congestion control state machine by focusing on its core
states and assume a bulk transfer application that always has
data available to send. This is practical because nearly all
TCP congestion control algorithms contain the same basic
core set of states from TCP New Reno (see Fig. 1) with the
differences being in terms of small changes in the actions
done on each transition or the insertion of extra states. For
example, CUBIC TCP simply modifies the additive increase
and multiplicative decrease constants on the transitions to fast
recovery and congestion avoidance. Similarly, TLP adds a
single state before exponential backoff. It is entered using a
slightly smaller timeout and sends a single new packet to try
and avoid an expensive RTO.

We developed a novel algorithm to track the sender’s
congestion control state using only network traffic. We find
that this algorithm works well even when used with implemen-
tations containing complex state machines and enhancements
and approximating these using only TCP New Reno. Our
algorithm detects the fast recovery state even when the cwnd
reduction is CUBIC’s 0.8 factor and not the 0.5 used by
New Reno. It still identifies retransmitted packets and enters
fast recovery even if SACK is in use and fast recovery
was triggered via SACK blocks. TLP is a case where our
approximation fails, but even here we misclassify a tail-loss-
probe as an RTO. This is only a minor issue because both states
are entered via by timeouts and trigger the transmission of a

g Concrete
- Strategies
Log results
Controller ¢
Client 1 WS .. | Server 1
TCP acke
\ [] Target
= Attack = Implementation
7N
L,.| Client 2 Server 2 | |
TCP TCP

- victim's flow - background flow

Fig. 4. Testing Environment of TCPWN

single packet. The pseudocode of our algorithm is presented
in Appendix B.

V. IMPLEMENTATION

Given the different variants of TCP congestion control
algorithms, features, and optimizations [8], [7], [17], [28],
[35], [34], [13] any implementation has to make choices
about what configuration and combination of features will
be provided. This leads to minor differences in congestion
control behavior between implementations which can enable
or prevent particular attacks or even attack classes.

A. Testing Environment

We developed a testing environment (Fig. 4) which lever-
ages virtualization for both client and server, enabling us to
run a wide range of implementations, independent of operating
system, programming language, libraries, or availability of
source code.

We connect four virtual hosts into a dumbbell topology
with two clients on one side, two servers on the other, and
a single bottleneck link between. When each client connects
to one of the servers, this topology provides an environment
where two flows have to compete for bandwidth on the
bottleneck link. This competition is precisely what an attacker
must influence in order to either increase or decrease the
throughput of his target flow. We connect the virtual machines
together with Linux tap devices and bridges. We artificially
cap the bandwidth on the bottleneck link and introduce a
10ms delay, using Linux traffic control. This gives us a virtual
network based on the widely used Linux networking stack that
supports throughput in excess of 800Mbits/sec.

One of the servers runs the target TCP implementation
under test. The other hosts run a standard TCP stack and serve
simply to complete the test harness and generate necessary
traffic. To generate traffic, our tests use file transfers over
HTTP. This simplifies setting up the target implementation,
as HTTP servers are available for a wide variety of operating
systems and implementations.

The Attack Injector is implemented as a proxy placed in
the middle of the bottleneck link. It intercepts all packets in
the target connection and applies any on-path basic actions.
It can also inject new packets into the network to emulate an

off-path attacker. The proxy also measures connection length
and amount of data transferred for attack detection and is
implemented in C++.

The State Tracker component is also implemented as a
proxy and is placed in our testing environment as near to the
target sender as possible. This proxy observes the packets sent
and received by the sender over small timeslices to automat-
ically infer the current state of the sender’s TCP congestion
control state machine. This proxy is also implemented in C++.

This whole environment is controlled and coordinated by
a Controller script that takes a concrete strategy from our
strategy generator, orchestrates the virtual machines, applica-
tions, Attack Injector, and State Tracker components to test that
strategy, collects the results, and returns them for analysis.

B. Attack Detection

The goal of an attacker targeting congestion control is to
impact throughput. We distinguish between four cases for a
target connection that are the observable outcome of an attack:

e Benign: no attack occurs.

e Faster: the sender sends at a faster rate than it should;
throughput is larger than the benign case; this corre-
sponds to a sender bypassing congestion control to
send faster.

e Slower: the sender is made to send at a slower rate than
what the network conditions will allow, the throughput
is smaller than a benign connection.

e Stall: the connection has stalled and will never com-
plete; corresponds to the case where the attacker made
the connection to stall.

Measuring the time it takes to transfer a file at the appli-
cation layer is not sufficient because it does not allow us to
distinguish between two cases: sending faster or connection
stalled. Both appear, in some cases, as stalled because the
TCP receiver has blocked reassembling data, while all data
has already been sent. Thus, the first metric we use is the time
it takes to transfer and acknowledge all data packets at the
TCP level, referred to simply as T%me below.

The time needed to transfer the data at the TCP level is
not sufficient to accurately classify attacks because it does
not capture the case when the connection stalls out part way
through due to an attack and the file has actually not been
transferred in its entirety. To detect this case, we use a second
metric, the amount of data transferred in the connection at the
TCP-level, referred to as SentData below.

We perform 20 tests transferring a file of size FileSize
without any attacks being injected to create baseline average
and standard deviation values of TimeBenign and stddev.
Then, using the Time and SentData metrics defined above,
our detection works as follows:

if Time is > (TimeBenign + 2*stddev):
Attack: Slower
else if Time is < (TimeBenign + 2*stddev):
if SentData >= (0.8*FileSize):
Attack: Faster
else:

10

TABLE 1. SUMMARY OF TCPWN RESULTS

Implementation Attacker | Tested | Marked | FP | Attacks
Ubuntu 16.10 (Linux 4.8) On-path 564 38 3 35
Ubuntu 14.04 (Linux 3.13) | On-path | 564 37 1 36
Ubuntu 11.10 (Linux 3.0) On-path 564 16 6 10
Debian 2 (Linux 2.0) On-path 564 3 0 3
Windows 8.1 On-path 564 9 1 8
Ubuntu 16.10 (Linux 4.8) Off-path 753 466 8 458
Ubuntu 14.04 (Linux 3.13) | Off-path | 753 448 9 439
Ubuntu 11.10 (Linux 3.0) Off-path | 753 564 10 | 554
Debian 2 (Linux 2.0) Off-path | 753 425 0 425
Windows 8.1 Off-path | 753 471 3 468
[Total [[6585 [2477 [41 [2436]
Attack: Stall
else:
Benign
VI. RESULTS

We tested five different implementations of TCP in five
operating systems: Ubuntu 16.10, Ubuntu 14.04, Ubuntu 11.10,
Debian 2, and Windows 8.1. The tests were run on a hy-
perthreaded 20 core Intel®) Xeon® 2.4GHz system with
125GB of RAM. We configured the bottleneck link to be
100Mbits/sec, with a 20ms RTT, and generated traffic for both
the target and competing TCP connections with a 100MB
HTTP file download for all implementations except Debian
2. Due to limitations with the virtualized NIC, Debian 2 was
limited to 10Mbits/sec, so we also limited the bottleneck link
to that same rate with a 20ms RTT while traffic generation
used a 10MB file. We used the Apache webserver for Linux
and IIS on Windows.

Testing each implementation took about 13 hours for the
on-path testing and 21 hours for the off-path testing, using
only 6 cores. Testing each strategy is independent and takes
between 15 and 60 seconds. With 48 cores running eight
testing environments (each needs 6 cores), the on-path testing
could have been completed in 1.6 hours and the off-path testing
in 2.6 hours.

Over all the tested systems, we tested 6,585 strategies and
found 2,436 attacks, which we classified into 11 classes. 8 of
these classes were previously unknown in the literature. We
summarize the attacks in Tables I and II. For lack of space,
below we discuss only the new attacks and we present the rest
in Appendix C.

While this analysis was performed manually, we observe
that it is amenable to automation. In our results, three classes
of attacks—Optimistic Ack, Desync, and Ack Lost Data—
make up the majority of marked strategies. An automated
classification of these three categories leaves only 281 (11%)
strategies to manually examine.

A. On-path Attacks

We only consider attacks resulting in increased throughput
for some target connection to be of interest to this attacker.
Our model-guided strategy generation produced 564 strategies
based on the basic actions described in section IV-C. As
shown in Table I, our system marked between 3 and 38 of
these strategies (depending on implementation). A few of these
marked attacks were false positives, due to the imprecision
of testing with a real network and real implementations. In

TABLE II.

CLASSES OF ATTACKS DISCOVERED BY TCPWN

Num | Attack Attacker | Description Impact Impl New
1 Optimistic Ack On-path Acking data that has not been received Increased Throughput ALL No [37]
2 On-path Repeated On-path Repeated cycle of Slow Start, RTO, Slow Start due to fixed Increased Throughput U(buntu)16.10, Yes
Slow Start ack number during Fast Recovery Ul11.10
3 Amplified Bursts On-path Send acks in bursts, amplifying the bursty nature of TCP Increased Throughput Ul11.10 Yes
4 Desync Attack Off-path | Inject data to desynchronize sequence numbers and stall | Connection Stall ALL No [22]
connection
5 Ack Storm Attack Off-path Inject data into both sides of connection, creating ack loop Connection Stall D(ebian)2, No [2]
‘W(indows)8.1
6 Ack Lost Data Off-path | Acknowledge lost data during Fast Recovery or Slow Start Connection Stall ALL Yes
7 Slow Injected Acks Off-path | Inject acks for little data slowly during Congestion Avoid- | Decreased Throughput | U11.10 Yes
ance
8 Sawtooth Ack Off-path | Send incrementing acks in Congestion Avoidance/Fast Re- | Decreased Throughput | U16.10,U14.04, Yes
covery, but reset on entry U11.10, W8.1
9 Dup Ack Injection Off-path | Inject >= 3 duplicate acks repeatedly Decreased Throughput | D2, W8.1 Yes
10 Ack Amplification Off-path | Inject acks for lots of new data very rapidly during Conges- | Increased Throughput U16.10,U14.04, Yes
tion Avoidance or Slow Start Ul11.10, W8.1
11 Off-path Repeated Off-path | Repeated cycle of Slow Start, RTO, Slow Start due to | Increased Throughput U11.10 Yes
Slow Start increased duplicate ack threshold

particular, while our target connection typically incurs its first
loss within 0.5 seconds of starting, due to competing with
the background connection, in these false positive tests the
first loss in the target connection does not occur until after at
least 1.5 seconds. Since TCP continues to increase its sending
rate until it gets a loss, this results in an unusually high
sending rate. This longer time to loss is not attributable to
any basic action applied, but is simply a result of variations in
packet arrival and departure times, packet processing delays,
operating system scheduling, and other random variations. The
remaining marked strategies are real attacks against a TCP
implementation. We identified between 3 and 36 of these,
depending on the implementation. Through manual analysis,
we grouped these into 3 classes (Table II), two of which are
previously unknown in the literature.

On-path Repeated Slow Start (new). These attacks op-
erate by repeatedly inducing an RTO followed by Slow Start.
Thanks to Linux’s choice to use a short RTO timer, the rapid
increase in sending rate during Slow Start balances out the
idle period needed to cause an RTO and in many tests actually
provides a higher average sending rate. This is partly due to
the significant impact this attack has on competing connections
because of the repeated, rapid sending periods that end in
a loss for both connections. These repeated losses cause the
competing connection to slow down repeatedly. We found this
attack class against both Ubuntu 11.10 and Ubuntu 16.10. For
both versions, this behavior is best induced by preventing an
increase of the cumulative acknowledgement in Fast Recovery,
preventing recovery of losses and causing an RTO.

Amplified Bursts (new). This class of attack operates by
collecting acknowledgement packets and then sending them
together in a burst. This additional burstiness often causes more
frequent losses in the competing connection which causes it to
slow down and our target flow to increase its throughput. We
found this attack class against Ubuntu 11.10 with a strategy
that collected acknowledgement packets to send them in bursts
during Congestion Avoidance and optimistically acknowledged
data during Slow Start, increasing the size of cwnd. It is
interesting to note that without our model-guided strategy
generation we would have been extremely unlikely to find
this attack. This is because delaying acknowledgements and
sending them in bursts is only a good idea during Congestion
Avoidance. During Slow Start, cwnd is small enough that

11

there may not be enough acknowledgements in flight to make
a single burst, leading to a connection stall. Similarly, in
Fast Recovery, the sender needs to get acknowledgements as
soon as possible so that it can recover from the loss and
keep sending data. Delaying acknowledgements and collecting
enough for a single burst tends to cause the connection to stall.

This attack bears significant resemblance to the Induced-
Shrew Attack [25]. However, that attack seeks to manipulate
a TCP connection to cause catastrophic throughput reduction
on other competing connections while maintaining a minimal
sending rate itself. Instead, the Amplified Burst attack focuses
on increasing the throughput of our target connection.

B. Off-path Attacks

An off-path attacker can observe network traffic but cannot
directly modify such traffic. As a result, they are limited to
injecting new (possibly spoofed) packets into the network. In
addition to increasing throughput, possibly as part of a denial
of service attack, an off-path attacker might be interested in
decreasing the throughput or stalling some target connection.

Our model-guided strategy generation produced 753 strate-
gies based on injecting spoofed packets. As shown in Table I,
our system marked between 425 and 564 of these strategies
(depending on implementation) as attacks. A few of these
marked attacks turned out to be false positives. These are
mostly cases where, due to imprecision from testing real
implementations, the target connection does not see its first
loss for an abnormally long time, leading to a higher sending
rate than normal. We present a summary in Table II.

Ack Lost Data (new). This class of attacks contains a
wide range of operations that cause lost data to be perceived
as acknowledged at some point in the connection. This occurs
when an attacker injects a spoofed acknowledgement packet
acknowledging data above the current cumulative acknowl-
edgement when the network is about to enter Fast Recovery.
In this case, at least some of the lost data will be deemed
acknowledged by the victim, causing that data to never be
retransmitted. At this point, anything the sender retransmits or
sends will not cause the receiver to increase the cumulative
acknowledgement and the connection permanently stalls. We
found a wide variety of strategies in this attack class against
all implementations we tested.

Slow Injected Acks (new). These attacks operate by in-
jecting spoofed acknowledgements that increase their acknowl-
edgment number at a slow and constant rate. As these acknowl-
edgement packets are injected, each one causes TCP to send a
few packets—equivalent to the amount of data acknowledged—
, due to TCP’s self-clocking design. This essentially causes
TCP to bypass congestion control and cwnd entirely and
send at the rate at which the spoofed acknowledgements are
acknowledging data: ack_amount * injection_frequency.
This rate can be made much slower than TCP would otherwise
achieve. Additionally, due to the spoofed acknowledgements,
any real acknowledgements for data will be considered old and
ignored. We found this class of attacks against Ubuntu 11.10.

Sawtooth Ack (new). These attacks also operate using
spoofed acknowledgements that increase their acknowledge-
ment number at a steady pace. However, these packets may
acknowledge more data and occasionally reset their acknowl-
edgment number to the true cumulative acknowledgement
point. This starting over, typically at a state transition from
Congestion Avoidance to Fast Recovery or back, results in
a long string of spoofed acknowledgements with increasing
acknowledgement numbers that eventually reaches the previ-
ous high acknowledgement, at which point the sender begins
sending new data. This causes a very prominent sawtooth
pattern in a time sequence graph of the connection. Due to
the increasing number of acknowledgements that must be sent
to reach the highest acknowledgement each time, the sending
rate of a connection under this type of attack continuously
decreases. We found this class of attacks against Ubuntu
16.10, Ubuntu 14.04, Ubuntu 11.10, and Windows 8.1 using
a variety of strategies. In our tests, this attack usually resulted
in approximately a 12x reduction in throughput. The attacker
is required to expend approximately 40Kbps for this attack.

Dup Ack Injection (new). This class of attack operates by
repeatedly injecting three or more spoofed duplicate acknowl-
edgements into the target connection in hopes of spuriously
triggering Fast Recovery and slowing the connection down.
We have found this class of attack to be very effective against
Windows 8.1 and Debian 2. Newer Linux versions are not
vulnerable to this attack due the use of DSACK [7] to detect
spurious retransmissions and a mechanism to dynamically
adjust the duplicate acknowledgement threshold needed to
trigger Fast Recovery [42]. In our tests, this attack often
resulted in approximately a 12x reduction in throughput when
using Windows 8.1 or Debian 2. The connection repeatedly
enters Fast Recovery and needlessly retransmits significant
data. The attacker needs only 40Kbps to launch this attack.

Ack Amplification (new). This class of attack operates
similarly to Slow Injected Acks. Instead of sending spoofed
acknowledgements with increasing sequence numbers slowly,
the attacker sends them very quickly. Each one causes the
sender to send a large burst of packets, effectively bypassing
congestion control and cwnd completely. This effect is even
more pronounced in Slow Start, where the sender can send
two bytes for every one acknowledged. Additionally, since any
losses are masked by the spoofed acknowledgements, TCP
will never slow down. This results in a very powerful class
of attack where an attacker can cause the target connection
to consume all available bandwidth up to the network and/or
sending system capacity by simply sending acknowledgements

12

at around 40Kbps. In our tests, the competing connection was
left starved for bandwidth, with throughput near zero, and often
doing repeated RTOs for the duration of the attack. The low
bandwidth required makes this ideal for a denial of service
attack. We found a wide variety of strategies in this attack class
against Ubuntu versions 16.10, 14.04, 11.10, and Windows 8.1.

Off-path Repeated Slow Start (new). This class of attacks
is very similar to the On-path Repeated Slow Start attacks
discussed previously. We found this attack in Ubuntu 11.10.

VII. RELATED WORK

Attacks on congestion control. Previous work manually
identified several attacks against TCP congestion control. First
work in this area is [22] which identified the Desynchroniza-
tion Attack which causes the sender and receiver to become
desynchronized with respect to the location of the cumulative
acknowledgement, resulting in a connection stall. Three attacks
were shown in [37]: Optimistic Ack, Ack Division, and
Dup Ack Spoofing. These attacks allow a malicious receiver
or on-path attacker to increase the throughput of a target
connection by modifying how it acknowledges data, either
acknowledging more data than it should, acknowledging it
in many little pieces, or repeatedly acknowledging the same
data. Ack Division and Dup Ack Spoofing has since been
widely mitigated by applying Appropriate Byte Counting [3]
and similar implementation-level mitigations.

The work in [26] and [25] introduced two attacks which
degrade TCP throughput along some target link while expend-
ing minimal bandwidth in an attempt to avoid detection.

A security analysis of TCP commissioned by the British
Government [12] identified two additional attacks available
to a blind attacker. These are the Blind Flooding Attack and
Blind Throughput Reduction Attack. Both operate by sending
spoofed acknowledgements which will cause the receiver to
send a duplicate acknowledgment if the packet is out of the
acceptable sequence window.

Finally, [2] identified the Ack Storm attack where the
injection of data into a target connection prevents further data
transfer and generates an infinite series of acknowledgements,
as both parties respond to what they consider to be an invalid
acknowledgement with an acknowledgement.

In contrast to these, TCPWN performs an automated anal-
ysis of TCP congestion control, based on a state machine
description, to identify potential attacks and then automatically
tests real implementations of TCP for possible attacks.

Automated vulnerability discovery in protocols. Prior work
has looked at automatically finding vulnerabilities in network
protocols by using fuzzing. While random fuzz testing [29]
is often effective in finding interesting corner case errors, the
probability of “hitting the jackpot” is low because it typically
mutates the well-formed inputs and tests the program on the
resulting inputs. To overcome this inherent problem of fuzzing,
a set of works like SNOOZE [6], KiF [1], and SNAKE [21]
leverage the protocol state machines to cover deeper and
more relevant portions of the search space. They require the
end users to provide the protocol specification (e.g., message
format, state machines) and various fault injection scenarios
to discover vulnerabilities in stateful protocols. These tools

primarily search for crashes or other fatal errors. In contrast,
TCPWN aims to automatically discover attacks on the runtime
performance of TCP congestion control by leveraging a model-
guided search technique.

Several other research efforts [14], [24], [38], [36], [5]
leverage program analysis, for example, symbolic execution,
to find vulnerabilities in protocol implementations. MAX [24]
focuses on two-party protocols to find performance attacks
mounted by a compromised participant that can manipulate
the victim’s execution control flow. However, MAX relies on
user specified information about a known vulnerability of the
code to limit the search space during symbolic execution.
In contrast, TCPWN relies on vulnerable actions common
to the protocol state machine, not specific to a particular
implementation. MACE [14] combines symbolic execution
with concrete execution to infer the protocol state machine
and use it as a search space map to allow deep exploration for
bugs. While these state machines can represent the behavior
of protocols with various message types (e.g., RFB, SMB),
they cannot capture the different aspects of TCP congestion
control because the number of messages (e.g., ACKs) plays a
significant role in lieu of types. Therefore, TCPWN utilizes the
congestion control state machine derived from the specifica-
tions to generate an effective, but reduced, set of test scenarios.

VIII. CONCLUSION

Today, the testing of congestion control and the discovery
of attacks against it is mostly a manual process performed
by protocol experts. We developed TCPWN, a system to
automatically test real implementations of TCP by searching
for attacks against their congestion control. TCPWN uses a
model-guided attack generation strategy to generate abstract
attack strategies which are then converted to concrete attack
scenarios made up of message-based actions or packet in-
jections. Finally, these concrete attack scenarios are applied
in our testing environment, which leverages virtualization to
run real implementations of TCP independent of operating
system, programming language, or libraries. We evaluated 5
TCP implementations including both open- and closed- source
systems, using TCPWN. We found 2,436 attack strategies
which could be grouped into 11 classes, of which 8 are new.

ACKNOWLEDGMENT

This material is based in part upon work supported by
the National Science Foundation under Grant Numbers CNS-
1600266, CNS-1617728, and CNS-1409191. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

H. Abdelnur, R. State, and O. Festor, “KiF: A stateful SIP fuzzer,” in
International Conference on Principles, Systems and Applications of IP
Telecommunications, 2007, pp. 47-56.

R. Abramov and A. Herzberg, “TCP ack storm DoS attacks,” in IFIP
International Information Security Conference, 2011, pp. 29-40.

[2]
[3] M. Allman, “TCP Congestion Control with Appropriate Byte Counting
(ABC),” RFC 3465 (Experimental), 2003.

M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC
5681 (Draft Standard), 2009.

[4]

13

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

R. Banabic, G. Candea, and R. Guerraoui, “Finding trojan message
vulnerabilities in distributed systems,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2014, pp. 113-126.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “SNOOZE: Toward a stateful network protocol fuzzer,” in
International Conference on Information Security, 2006, pp. 343-358.

E. Blanton and M. Allman, “Using TCP Duplicate Selective Ac-
knowledgement (DSACKs) and Stream Control Transmission Protocol
(SCTP) Duplicate Transmission Sequence Numbers (TSNs) to Detect
Spurious Retransmissions,” RFC 3708 (Experimental), 2004.

E. Blanton, M. Allman, L. Wang, 1. Jarvinen, M. Kojo, and Y. Nishida,
“A Conservative Loss Recovery Algorithm Based on Selective Ac-
knowledgment (SACK) for TCP,” RFC 6675 (Proposed Standard),
2012.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in Conference on
Communications Architectures, Protocols and Applications, 1994.

Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M. Mar-
vel, “Off-path TCP exploits: Global rate limit considered dangerous,”
in USENIX Security Symposium, 2016, pp. 209-225.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
September-October, pp. 20 — 53, 2016.

Centre for the Protection of National Infrastructure, “Security assess-
ment of the transmission control protocol,” Centre for the Protection of
National Infrastructure, Tech. Rep. CPNI Technical Note 3/2009, 2009.

Y. Cheng, N. Cardwell, and N. Dukkipati, “RACK: a time-based fast
loss detection algorithm for TCP,” draft-ietf-tcpm-rack-01.txt, 2016.

C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and D. Song,
“MACE: Model-inference-assisted concolic exploration for protocol and
vulnerability discovery,” in USENIX Conference on Security, 2011.

J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s
Initial Window,” RFC 6928 (Experimental), 2013.

J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementa-
tions,” in USENIX Security Symposium, 2015.

N. Dukkipati, N. Cardwell, and Y. Cheng, “Tail Loss Probe (TLP): An
Algorithm for Fast Recovery of Tail Losses,” draft-dukkipati-tcpm-tcp-
loss-probe-01.txt, 2013.

Y. Gilad and A. Herzberg, “Off-path attacking the web,” in WOOT,
2012, pp. 41-52.

T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” RFC 6582 (Proposed
Standard), 2012.

V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 314-329, 1988.

S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging State Information for
Automated Attack Discovery in Transport Protocol Implementations,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks, 2015.

L. Joncheray, “A simple active attack against TCP,” in USENIX Security
Symposium, 1995.

S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), 2005.

N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
“Finding Protocol Manipulation Attacks,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, 2011.

V. A. Kumar, P. S. Jayalekshmy, G. K. Patra, and R. P. Thangavelu,
“On remote exploitation of TCP sender for low-rate flooding denial-
of-service attack,” IEEE Communications Letters, vol. 13, no. 1, pp.
46-48, 2009.

A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of
service attacks and counter strategies,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 683-696, 2006.

H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru, “Turret:
A platform for automated attack finding in unmodified distributed
system implementations,” in International Conference on Distributed
Computing Systems, 2014, pp. 660—-669.

[28] M. Mathis, N. Dukkipati, and Y. Cheng, “Proportional Rate Reduction
for TCP,” RFC 6937 (Experimental), 2013.

[29] B. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability
of unix utilities,” Communications of the ACM, vol. 33, no. 12, 1990.

[30] G. Nelson and D. Oppen, “Fast decision procedures based on congru-
ence closure,” J. ACM, vol. 27, no. 2, pp. 356-364, 1980.

[31] J. Postel, “Transmission control protocol,” RFC 793 (Standard), 1981.

[32] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack - how firewall middleboxes reduce security,” in IEEE Symposium
on Security and Privacy, 2012, pp. 347-361.

[33] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence number
inference attack: how to crack sequence number under a second,” in
ACM Conference on Computer and Communications Security, 2012.

[34] 1. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffeneg-
ger, “CUBIC for Fast Long-Distance Networks,” draft-ietf-tcpm-cubic-
02.txt, 2016.

[35] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmis-
sion Timeouts with TCP,” RFC 5682 (Proposed Standard), 2009.

[36] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle, “KleeNet: Discovering insidious interaction bugs in wireless
sensor networks before deployment,” in /EEE International Conference
on Information Processing in Sensor Networks, 2010, pp. 186-196.

[37] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP conges-
tion control with a misbehaving receiver,” ACM SIGCOMM Computer
Communication Review, vol. 29, no. 5, 1999.

[38] J. Song, C. Cadar, and P. Pietzuch, “SymbexNet: Testing Network
Protocol Implementations with Symbolic Execution and Rule-Based
Specifications,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 695-709, 2014.

[39] M. Sridharan, K. Tan, D. Bansal, and D. Thaler, “Compound TCP:
A New TCP Congestion Control for High-Speed and Long Distance
Networks,” draft-sridharan-tcpm-ctcp-02.txt, 2009.

[40] R. Stewart, S. Long, D. Gallatin, A. Gutarin, and E. Livengood,
“The netflix tech blog: Protecting netflix viewing privacy at
scale,” 2016. [Online]. Available: http://techblog.netflix.com/2016/08/
protecting-netflix- viewing-privacy-at.html

[41] A. Studer and A. Perrig, “The coremelt attack,” in European Symposium
on Research in Computer Security, 2009, pp. 37-52.

[42] The Linux Kernel Community, “/proc/sys/net/ipv4/* variables,”
2017. [Online]. Available: https://www.kernel.org/doc/Documentation/
networking/ip-sysctl.txt

[43] M. Utting and B. Legeard, Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

APPENDIX A
TCP ACKNOWLEDGEMENTS

All TCP packets contain a single, common header. (shown
in Fig. 5). This header contains source and destination ports, a
sequence number, an acknowledgment number, a set of control
bits, a checksum, and options. One of the control bits is the
ACK bit, which indicates whether the acknowledgment number
included in the header is meaningful. After the initial TCP
handshake, all packets set this bit and include the current TCP
acknowledgement number. Hence, all TCP packets include
acknowledgement information and may acknowledge new data
or indicate duplicate acknowledgements.

In most TCP connections, only one side of the connection
is sending data at any given time. In order to provide feedback
to the sender, TCP requires that receivers that are quiescent,
that is, not currently sending data themselves, must periodi-
cally send an empty TCP packet to supply the sender with
a current acknowledgement. These empty TCP packets are
simply TCP packets with no data and are usually called pure
acknowlegements, or simply acknowledgements. We focus on

0 1 2 3
01234567890123456789012345678901

| Source Port | Destination Port |

Sequence Number

Acknowledgment Number

| |
| |
| Data | |U[A[P|R[S|F| |
| |
| |

Offset| Reserved [R|C[S[S|Y]|I] Window
[G|K[H|T|N|N|
| Checksum | Urgent Pointer |
| Options | Padding |

| data |

Fig. 5. TCP Header fields. Each tick represents a bit position. [31]

these acknowledgement packets in this work because connec-
tions where both hosts are sending simultaneously are rare.
However, our attacks are equally applicable in such scenarios
and would usually be launched by injecting additional pure
acknowledgement packets into the connection.

APPENDIX B
STATE TRACKING ALGORITHM

Our attack injector uses the state information supplied by
the state tracking algorithm to apply the basic actions corre-
sponding to the current congestion control state during testing.
Our state tracking algorithm observes the network traffic from
a TCP sender in order to track its current congestion control
state. We approximate the exact congestion control algorithm
in use by the sender and consider it to be New Reno for the
purposes of state tracking.

The core idea of our algorithm is to take a small (sub-RTT)
time slice and observe the packets received and sent by an
implementation. If about twice as many bytes of data have been
sent as acknowledged, the state is inferred to be Slow Start and
the sending rate is increasing exponentially. If about an equal
number of bytes have been sent and acknowledged, the state
is inferred to be Congestion Avoidance since the sender is
maintaining a steady sending rate. If fewer bytes have been
sent than acknowledged or there are retransmitted packets, the
state is inferred to be Fast Recovery, and if no packets are
received and only a few packets are sent, then an RTO event
was observed and the sender is in state Exponential Backoff.

Our algorithm uses two timers, the first fires every sub_rtt
seconds and the second fires max_burst_gap seconds after
each packet unless reset. This first timer handles the case
where TCP is operating at high speed and has packets in
flight constantly while the second handles the case where TCP
has not yet reached peak efficiency and is sending packets
in bursts and then waiting for their acknowledgements before
sending more. We experimentally set sub_rtt to 10ms and
max_burst_gap to Sms based on a network RTT of 20ms.

Whenever either of these timers expires, the algorithm
determines whether TCP is sending data smoothly or in bursts.
If TCP is sending data in bursts and it has been less than
max_burst_gap seconds since the last packet, this timer ex-
piration, is ignored. Otherwise, the state inference is updated.
If the most recent packet was a SYN, FIN, or Reset, then the
connection state is INIT or END. Otherwise, we compute the
ratio of sent to acknowledged data and the space between the
two most recent packets, and use this information to determine
what state the sender is in based on the intuition presented
above. We then reset our data sent and data acknowledged

counters. For the slow start and congestion avoidance state, we
average the ratios from the last two sampling periods as we
found experimentally that this helped to produce more accurate
results. Finally, if the ratio is less than 0.8, a situation that
should never occur, we ignore this sample.

APPENDIX C
ADDITIONAL RESULTS

Below we present attacks that we have automatically found
with TCPWN and which were known.

A. On-path Attacks

Optimistic Ack This class of attack operates by optimisti-
cally acknowledging data that the receiver has not received
and acknowledged yet. This reduces the effective RTT of the
connection, allowing TCP to increase its sending rate faster,
and hides lost packets, preventing TCP from slowing down in
response to congestion. By hiding lost packets, the receiver
will not receive the complete data transfer, but this may be
acceptable if the data stream can tolerate losses or if the
attacker does not care about the data, i.e., is simply conducting
a denial of service attack.

This attack class was first identified in [37]. Unfortunately,
the mitigations proposed require non-backwards-compatible
modifications to TCP, such as inserting a random nonce into
each packet. As a result, this attack class is still present in
modern TCP implementations, and we found many instances
of it in all 5 of the implementations we tested. In our tests,
this attack usually caused the target connection to consume all
available bandwidth, starving competing connections to near
zero throughput for the duration of the attack.

B. Off-path Attacks

Desync Attack This class of attacks operates by spoofing
packets containing a few bytes of data to both sender and
receiver in the target connection. If a host is not currently
receiving data, this injected data will incorrectly cause its
cumulative acknowledgement number to increase. All future
packets by this host will then have an acknowledgement
number higher than anything the other host sent and will be
ignored, causing an unrecoverable connection stall.

These attacks were first identified by [22]. The only known
mitigation is encryption to prevent access to the sequence
numbers of the packets. We identified many instances of
this attack class against all tested implementations and in all
congestion control states.

Ack Storm Attack Ack Storm attacks are similar to
Desync Attacks but spoof packets with data into both sides
of idle connections. By doing so, the cumulative acknowl-
edgement numbers of both sender and receiver are increased.
Unfortunately, since neither side actually sent any data, both
will consider any future acknowledgements invalid and re-
spond with a duplicate acknowledgement as required by the
TCP specification [31]. This leads to an infinite storm of
acknowledgements between both sides of the connection, as
each responds to the invalid acknowledgements from the other.

This is a known attack, first identified by [2]. One mitiga-
tion to this attack is to ignore invalid acknowledgements if they
show up too frequently. Unfortunately, neither Debian 2 nor
Windows 8.1 provide this mitigation, enabling us to discover
this attack with several different strategies.

Algorithm 2: State Tracking

1 Function Init ()

2

Start timer intervallimer to expire every sub_rtt ms
(10ms)

prior Pkt = cur Pkt = now()

urgEvent = false

state = UNKNOWN

6 Function OnPacket (p)

18
19
20
21

22
23
24

25
26
27
28

29

30

31

32
33

34
35

36
37

38

39

40
41
42

43
44
45
46

update dataBytes, dataPkts, ackBytes, ackPkts,
seqHigh, highAck, cur PktType and rexmits based
on p

if cur Pkt < now() — maz_burst_gap then
| lastIdle = now()

prior Pkt = cur Pkt
cur Pkt = now()
Reset timer packetT'imer to expire in max_burst_gap
ms (5ms)
if rexmits > 0 then
urgFEvent = true
L Reset timer packetT'imer to expire now

Function OnTimer ()

if urgEvent or cur Pkt >maz_burst_gap or
lastldle > 4xsub_rtt then
urgFBvent = false
if cur PktType is SYN then
L state = INIT

return
if cur PktType is FIN or RST then
L state = END

return
curRatio = dataBytes | ackBytes
pktSpace = cur Pkt — prior Pkt
if dataPkts > 0 and (pktSpace > 200ms) then
L state = EXP_BACKOFF

else if state == FAST_RECOV and
ackHigh < ackHold then
L state = FAST_RECOV

else if rexmits > 0 or (ackBytes == 0 and
ackPkts > 3) then
ackHold = seqHigh
state = FAST_RECOV

else if (curRatio + priorRatio)/2 > 1.8 then
| state = SLOW_START

else if (curRatio + priorRatio)/2 > 0.8 then
L state = CONG_AVOID

else if state == EXP_BACKOFF and
curRatio < 0.1 then
L ackPkts =0

else

L

prior Ratio = cur Ratio
ackPkts = ackBytes = 0
dataPkts = dataBytes = 0
rexmits = 0

prior Ratio = 0.8 x cur Ratio 4 0.2 x prior Ratio
return

15

