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Abstract

Secure channel establishment protocols such as TLS are some of the most important crypto-
graphic protocols, enabling the encryption of Internet traffic. Reducing the latency (the number
of interactions between parties) in such protocols has become an important design goal to improve
user experience. The most important protocols addressing this goal are the just-released TLS 1.3,
which is likely to see deployment in the near future, and QUIC, a secure transport protocol from
Google that is available in the Chrome browser. There have been a number of formal security
analyses for TLS 1.3 and QUIC, but their security, when layered with their underlying transport
protocols, cannot be easily compared. Our work is the first to thoroughly compare the security
and availability properties of these protocols. Towards this goal, we develop novel security models
that permit “layered” security analysis. In addition to the standard goals of server authentication
and data privacy and integrity, we consider the goals of IP spoofing prevention, key exchange
packet integrity, secure channel header integrity, and reset authentication, which capture a range
of practical threats not usually taken into account by existing security models that focus mainly
on the crypto cores of the protocols. Equipped with our new models we provide a detailed com-
parison of TLS 1.3 over TCP Fast Open (TFO), QUIC over UDP, and QUIC[TLS] (a new design
for QUIC that uses TLS 1.3 key exchange) over UDP. In particular, we show that TFO’s cookie
mechanism does provably achieve the security goal of IP spoofing prevention. Additionally, we
find several new availability attacks that manipulate the early key exchange packets without be-
ing detected by the communicating parties. By including packet-level attacks in our analysis, our
results shed light on how the reliability, flow control, and congestion control of the above layered
protocols compare, in adversarial settings. We hope that our results will help protocol designers
in their future protocol analyses and that our results will help practitioners better understand the
advantages and limitations of novel secure channel establishment protocols.

1 Introduction

Motivation. Nowadays, more than half of all Internet traffic is encrypted according to a 2017 EFF
report [24], with Google reporting that 93% of its traffic is encrypted as of January 2019 [1]. This
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trend has also been facilitated by efforts like the free digital certificate issuer Let’s Encrypt servicing
87 million active (unexpired) certificates and 150 million unique domains at the end of 2018 [2].

This widespread Internet traffic encryption is enabled by protocols that allow two parties (where
one or both parties have a public key certificate) to establish a secure communication channel over the
insecure Internet. Typically, the parties first authenticate all parties holding a public key certificate
and agree on a session key — the key exchange phase. Then, this session key is used to encrypt the
communication during the session — the secure channel phase. We will refer to such protocols as
secure channel establishment protocols.

The main secure channel establishment protocol in use today is TLS. The session key establishment
with TLS today involves 3 round-trip times (RTTs) of end-to-end communication, including the cost
of establishing a TCP connection before the TLS connection. Further, this TCP cost is paid every
time the two parties communicate with each other, even if the connection is interrupted and then
immediately resumed. Given that most encrypted traffic is web traffic, this cost represents a significant
performance bottleneck, a nuisance to users, and financial loss to companies. For instance, back in
2006 Amazon found that every 100ms of latency cost them 1% in sales [40], while a typical RTT on
a connection from New York to London is 70ms [26].

Not surprisingly, many efforts in recent years have focused on reducing latency in secure channel
establishment protocols. The focus has been on reducing the number of interactions (or RTTs) during
session establishment and resumption without sacrificing much security. The most important protocols
addressing this goal are TLS 1.3 [51] (the just-released successor to the current TLS 1.2 standard)
and Google’s QUIC [53].

With TLS 1.3, it is possible to reduce the number of RTTs (prior to sending encrypted data)
during session resumption to 1. This reduction is achieved by utilizing a session ticket that was saved
during a previous communication and multiple keys (which we call stage keys) that can be set within
one session, of which some keys are set faster (with slightly less security) so that data can be encrypted
earlier. The remaining 1-RTT during session resumption is due to the aforementioned TCP connection.
However, one recent optimization for TCP, called TCP Fast Open (TFO) [50, 14] extends TCP to
allow for 0-RTT resumption connections, so that the client may begin data transmission immediately.
The mechanism underlying this optimization is a cookie saved from previous communication, similar
to the ticket used by TLS 1.3.

Like TLS 1.3, Google’s QUIC uses weaker initial keys, under which data can be encrypted earlier,
and a token saved from previous communication between the parties. But unlike TLS, QUIC operates
over UDP rather than TCP. Instead of relying on TCP for reliability, flow control, and congestion con-
trol, QUIC implements its own data transmission functionality, integrating connection establishment
with key exchange. These features allow QUIC to have 1-RTT full connections and 0-RTT resumption
connections.

Table 1: Latency Comparison of Layered Protocols
Layered Full Resumption
Protocol Connection Connection

TCP+TLS 1.2 3-RTT 2-RTT

TCP+TLS 1.3 2-RTT 1-RTT

TFO+TLS 1.3 2-RTT 0-RTT

UDP+QUIC 1-RTT 0-RTT

UDP+QUIC[TLS] 1-RTT 0-RTT

In Table 1 we show the cost of establishing full and resumption connections for several layered pro-
tocol options achieving end-to-end security. These include TLS 1.2 over TCP, TLS 1.3 over TCP, TLS
1.3 over TFO, QUIC over UDP, and the new design for QUIC [27] (which we refer to as QUIC[TLS] [57]
to indicate that it borrows the key exchange from TLS 1.3) over UDP. It is clear that the last three
win in terms of the number of interactions. But how does their security compare?
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At first glance, the question is easy to answer. Recent works have done formal security analyses of
TLS 1.3 [34, 8, 18, 15, 35, 19, 39, 22, 17, 7, 16, 10] and Google’s QUIC [21, 41]. Most works confirm
that (the cryptographic cores of) both protocols are provably secure under reasonable computational
assumptions. Moreover, as shown in [41, 22], their 0-RTT data transmission designs cannot achieve
the same strong security guaranteed by classical key exchange protocols with at least one RTT. In
particular, the 0-RTT keys do not provide forward secrecy and the 0-RTT data suffers from replay
attacks. Overall, it might seem that all three layered protocols mentioned above are equally secure.

However, a closer look reveals that the answer is not that simple. First, all aforementioned formal
security analyses, except for [41] analyzing the IP spoofing (source validation) of QUIC, did not
consider packet-level availability attacks. Therefore, it is not clear at the packet level what security
can be achieved and what attacks can be prevented by these protocols. In other words, we have no
formal understanding of what security can be obtained when layering protocols. Also, TFO uses some
cryptographic primitives, such as a cookie, to prevent IP spoofing, but, to the best of our knowledge,
no formal analysis has been done. Furthermore, the security of QUIC[TLS] has not been formally
analyzed (although some security aspects can be reduced to those of Google’s QUIC and TLS 1.3).

Our contributions. To compare security, we first need to define a general protocol syntax for
secure channel establishment and fix a security model for it. Since the only provable security analysis
that studies security related to data transmission functionality is [41], we take their Quick Connections
(QC) protocol definition and Quick Authenticated and Confidential Channel Establishment (QACCE)
security model as our starting point.

To accommodate protocol syntaxes of TLS 1.3 and QUIC[TLS], we extend the QC protocol to a
more general Multi-Stage Authenticated and Confidential Channel Establishment (msACCE) protocol,
which allows more keys to be set during each session. Then, we extend the Quick Authenticated and
Confidential Channel Establishment (QACCE) security model [41] to two msACCE security models
— msACCE-std and msACCE-pauth — that are general enough for all layered secure channel es-
tablishment protocols listed in Table 1. The former is fairly standard and is for core cryptographic
security, and the latter is novel and is for packet-level security.

Like most security models, we consider a very powerful attacker who can initiate communications
between honest parties, can intercept, inject, drop, or modify the exchanged packets, and can adap-
tively learn parties’ stage keys or adaptively corrupt them to learn their long-term keys and secret
states. The attacker can also have prior knowledge of the exchanged data. However, the attacker
should not be able to prevent clients from establishing final session keys without noticing the at-
tacker’s involvement (Server Authentication) or using these keys to achieve a secure channel with
data privacy and integrity (Channel Security). These standard security goals are captured by our first
model.

For the second model that deals with packet-level availability attacks, we first follow QACCE [41] to
consider IP-spoofing prevention (also known as address validation) and further extend it to additionally
capture IP-spoofing attacks in the full connections. Then, we design several novel notions for packet-
level authentication as follows.

First, we define Header Integrity to capture the integrity of the whole unencrypted packet header.
(Note that previous models like QACCE only cover the header integrity implied by the authenticitiy
security of the underlying authenticated encryption scheme.) To enable fine-grained security analyses
and comparisons, we split the above notion into two related ones, Key Exchange (KE) Header Integrity
and Secure Channel (SC) Header Integrity, which capture header integrity during the key exchange
phase and secure channel phase respectively. Furthermore, we define the notion of KE Payload
Integrity to cover availability attacks that modify the payloads of packets sent during key exchange.
We note that unlike the availability attacks shown in [41], successful attacks under our new notions
do not affect the client’s session key establishement and therefore are harder or impossible to detect
by the client. This makes such attacks more harmful and their treatment more important. Finally, we
formalize the new goal of Reset Authentication to deal with attacks forging a reset packet to abruptly
terminate an honest party’s session.
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Equipped with our new models, we study the security and availability functionalities provided
by TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS]. We first confirm that all protocols provably
satisfy the standard security notions of Server Authentication and Channel Security given that their
building blocks are secure. The results mostly follow from prior works and we just have to argue
that they still hold for the extended model. Similarly, prior results showed that QUIC achieves IP-
spoofing prevention and we show that this extends to our stronger notion. As for TFO+TLS 1.3, its
IP-spoofing prevention relies on TCP sequence number randomization and TFO’s cookie mechanism
(but no prior former analysis confirmed its security). We prove that TFO+TLS 1.3 does satisfy this
security assuming that the underlying block cipher is a pseudorandom function.

Regarding SC Header Integrity, we show that while UDP+QUIC is secure, TFO+TLS 1.3, on the
other hand, is insecure because it allows header-only packets to be sent in the secure channel phases
and does not authenticate the TCP headers of encrypted packets. This theoretical result captures
practical availability attacks that the networking community has been slowly uncovering via manual
investigation over the last 30 years [54, 31, 4, 13, 37, 36, 29, 49, 12, 25, 48, 43, 58, 30], such as TCP
flow control manipulation, TCP acknowledgement injection, etc.

We next show that neither protocol satisfies KE Header Integrity. For TFO+TLS 1.3 this result
leads to a TFO cookie removal attack that we discover, which allows the attacker to undermine the
whole benefit of TFO. Then, we show that UDP+QUIC is not secure in the sense of KE Payload
Integrity. This leads to a new availability attack that we call ServerReject Triggering. Note that
unlike the QUIC attacks (e.g., server config replay attack, connection ID manipulation attack, etc.)
discovered in [41], ServerReject Triggering is harder to detect and more harmful in this sense. We
show that TFO+TLS 1.3, on the other hand, achieves KE Payload Integrity.

We further show that neither TFO+TLS 1.3 nor UDP+QUIC provide Reset Authentication,
justifying the TCP Reset attack [58] relevant for TFO+TLS 1.3 and the PublicReset attack for
UDP+QUIC. For completeness, we recall the results from [41, 22] showing that neither protocol
provides forward secrecy for the keys encrypting 0-RTT data and that this data can be replayed.

We finally show that the new UDP+QUIC[TLS] protocol achieves the strongest security of three
designs. While formally it does not provide KE Payload Integrity, the related attacks can also happen
in TFO+TLS 1.3 in a similar way, while the latter satisfies KE Payload Integrity mainly because
its availability functionalities are all carried in its protocol headers rather than payloads. More
importantly, UDP+QUIC[TLS] is the only protocol that guarantees Reset Authentication (based
on the unpredictability of its reset tokens).

Our results are summarized in Table 2 in Section 5. Even though QUIC may not be able to sustain
the competition in the long run despite stronger security, we hope our models will help protocol
designers and practitioners better understand the important security aspects of novel secure channel
establishment protocols.

Paper organization. The rest is organized as follows. We provide an overview of relevant design
information for TFO, TLS 1.3, and QUIC in Section 2. Sections 3 and B specify our notations and
preliminaries. Section 4 formally defines our msACCE protocol and its security. Section 5 provides the
details of our security analyses and summarizes our findings about how security of the three layered
protocols compare. Section 6 concludes our paper.

2 Background

Network protocols are designed and implemented following a layered network stack model where each
layer has its own functionality, defines an interface for use by higher layers, and relies only on the
properties of lower layers. In this work, we are concerned with three layers: network, represented by
the IP protocol; transport, represented by UDP and TCP with the Fast Open optimization (TFO);
and application, represented by TLS or QUIC.

4



2.1 TLS 1.3 over TFO

TCP Fast Open. TCP Fast Open (TFO) is an optimization to the TCP protocol. TCP itself
provides the following services to an application (or higher protocol): (1) reliability, (2) ordered
delivery, (3) flow control, and (4) congestion control. It is connection-oriented and consists of three
phases: connection establishment, data transfer, and connection tear-down. TCP relies on control
information from its header to implement this functionality. For example, as shown in Fig. 5 in
Appendix A, control bits specify what type of packets are sent over the network, which determines
whether the packets are establishing a new connection, sending data, acknowledging data, or tearing
down the connection.

The disadvantage of layering protocols is that higher level protocols have no control over the
internal mechanics of lower level protocols and can interact with them only through defined interfaces.
A protocol using standard TCP for transferring data needs to wait for connection establishment at
the TCP layer to complete before it receives notification of a new connection and can begin its own
processing and data transfer.

The TFO optimization introduces a simple modification to the TCP connection establishment
handshake to reduce the 1-RTT connection establishment latency of TCP and allow for 0-RTT hand-
shakes, so that data transmission may begin immediately. TFO fulfills the same design goals mentioned
for TCP above, assuming the connection is established correctly.

The mechanism through which 0-RTT is achieved is a cookie that is obtained by the client first
time it communicates with a server and cached for later uses. This cookie is intended to prevent
replay attacks while avoiding the need for servers to keep expensive state. It is generated by the
server, authenticates client IP address, and has a limited lifetime. Generation and verification have
low overhead.

Cookies are sent in the TFO option field in SYN packets. The first two message exchanges in
Fig. 1, show how a cookie is obtained. The client requests a cookie by using the TFO option in the
SYN with the cookie field set to 0, indicating that it would like to use TFO. The server generates
an appropriate cookie and places it in the TFO option field of the SYN-ACK. The client caches this
cookie for subsequent connections to this server. If a cookie was not provided, the client instead caches
the negative response, indicating that TFO connections should not be tried to this server, for some
time.

In subsequent connections to this server (first message in Fig. 2), the client places its cached TFO
cookie in the TFO option in the SYN packet. The client is also allowed to send 0-RTT data in the
remainder of the SYN packet. This might be an HTTP GET request or a TLS ClientHello message.
When the server receives the SYN, it will validate the cookie. If the cookie is valid, it responds with a
SYN-ACK acknowledging the 0-RTT data and a response to the 0-RTT data. If the cookie is invalid
(expired or otherwise), a full handshake is required and any initial data ignored.

TLS 1.3. TLS provides confidentiality, authentication, and integrity of communication over a secure
channel between a client and a server. This is accomplished in two phases – the handshake and the
record protocol. The handshake sets up appropriate parameters for the record protocol to achieve
these three goals. These include parameters like the cipher suite to use and the shared secret key.
Unfortunately, the handshake in TLS 1.2 takes 2-RTTs to complete. Additionally, the naive layering
of TLS 1.2 over TCP, as traditionally used for HTTPS, would require a full 3-RTTs before the
HTTP request could be sent. Fortunately, the recently standardized TLS 1.3 [51] provides many
improvements over TLS 1.2. Most relevant for our purposes, it enables 0-RTT handshakes at the TLS
level.

In a TLS 1.3 full connection (see Fig. 1, fourth message), the client begins by sending a ClientHello
message containing a list of ciphersuites the client is willing to use with key shares for each and op-
tional extensions. The server responds with a ServerHello message containing the ciphersuite to
use and its key share. At this point, an initial encryption key is derived and all future messages
are encrypted. The server also sends an EncryptedExtensions message containing any extension
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Client Server

SYN,Cookie=nil

SYN-ACK,Cookie=ck

ACK

ClientHello

ServerHello

{EncryptedExtensions}

{CertificateRequest*}

{ServerCertificate*}

{ServerCertificateVerify*}

{ServerFinished}

{ClientCertificate*}
{ClientCertificateVerify*}
{ClientFinished}

[NewSessionTicket=tk]

[Application Data]

TFO
start

TFO
generate cookie

TLS
start

TLS
generate ticket

Figure 1: TFO+TLS 1.3 (EC)DHE 2-RTT full handshake. * indicates optional messages. {} and []
respectively indicate messages protected with initial and final keys.

data, a CertificateRequest message if doing client authentication, a ServerCertificate message
containing the server’s certificate, a ServerCertificateVerify message containing a signature over
the handshake with the private key corresponding to the server’s certificate, and a ServerFinished

message containing an HMAC of all messages in the handshake. The client receives these messages,
verifies their contents, and responds with ClientCertificate and ClientCertificateVerify mes-
sages if doing client authentication before finishing with a ClientFinished message containing an
HMAC of all messages in the handshake. At this point, a final encryption key is derived and used
for encrypting all future messages. If the server supports 0-RTT connections, one final handshake
message, the NewSessionTicket message, will be sent by the server to provide the client with an
opaque session ticket to be used in a resumption session.

In later TLS 1.3 resumption connections to this server, the client uses the session ticket established
in the prior full connection to do a 0-RTT connection. In this case, the client sends a ClientHello

message indicating a pre-shared-key ciphersuite, a ciphersuite to use for the final key, and the cached
session ticket. The client can then derive an encryption key and begin sending 0-RTT data. The server
will verify the session ticket, use it to establish the same encryption key, and send a ServerHello

message containing the ciphersuite to use and its final key share. At this point, an initial encryption
key is derived and all future messages are encrypted. The server also sends an EncryptedExtensions

message containing any extension data and a ServerFinished message containing an HMAC of all
messages in the handshake. The client receives these messages, verifies their contents, and responds
with an EndOfEarlyData message and a ClientFinished message containing an HMAC of all mes-
sages in the handshake. At this point, a final encryption key is derived and used for encrypting all
future messages.

TLS 1.3 over TFO. TLS assumes that lower layers provide reliable, in-order delivery of TLS mes-
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Client Server

SYN,Cookie=ck
ClientHello,PSK=tk
(Application Data*)

SYN-ACK

ServerHello

{EncryptedExtensions}

{ServerFinished}

ACK

(EndOfEarlyData)
{ClientFinished}

[Application Data]

TFO
start

TLS
start

TFO
check cookie

TLS
check ticket

Figure 2: TFO+TLS 1.3 PSK-(EC)DHE 0-RTT resumption handshake. * indicates optional messages.
() indicates messages protected using the 0-RTT keys derived from a pre-shared key. {} and []
respectively indicate messages protected with initial and final keys.

sages. As a result, TLS is usually layered on top of TCP, which provides these properties. This
usually results in a delay for the TCP handshake followed by a delay for the TLS handshake. This is
obviously undesirable. However, the combination of TLS 1.3 and TCP Fast Open enables true 0-RTT
connections.

In a full connection to a TFO+TLS 1.3 server, the client requests a TFO cookie in the TCP SYN
and then does a full TLS 1.3 handshake once the TCP connection completes. This takes 3-RTTs (see
Fig. 1), but provides a cached TFO cookie and cached TLS session ticket.

In subsequent resumption connections to this server, the client can use the TFO cookie to establish
a 0-RTT TCP connection and include the TLS 1.3 ClientHello message in the SYN packet. The
TLS ClientHello message can use the cached TLS session ticket to perform a 0-RTT resumption
handshake. Thus, the TCP and TLS 1.3 connections are established at the same time, as shown in
Fig. 2.

2.2 QUIC over UDP

UDP. UDP [46] is an extremely simple transport protocol providing unreliable datagram delivery, the
ability to multiplex data between multiple applications, and an optional checksum. A UDP sender
simply wraps the message to be sent with a UDP header (see Fig. 6 in Appendix A) and the receiver
unwraps the message and delivers it to the application, after possibly verifying the checksum. No
other processing is performed.

UDP has been typically used for applications where low latency is crucial, like video gaming and
real-time streaming video. As a result, it can traverse NAT devices and firewalls that often block
unknown or rare protocols.

QUIC. Quick UDP Internet Connections (QUIC) is a transport protocol developed by Google and
implemented by Chrome and Google servers since 2013 [53]. It now provides service for the majority
of requests by Chrome to Google properties [56]. QUIC’s goal was to provide secure communica-
tion comparable with TLS while achieving reduced connection setup latency compared to traditional
TCP+TLS 1.2. To do so, it provides the following services to applications: (1) reliability, (2) in order
delivery, (3) flow control, (4) congestion control, (5) data confidentiality, and (6) data authenticity.
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Client Server

InchoateClientHello

ServerReject, STK=stk

ClientHello, STK=stk
{Application Data*}

{ServerHello}

[Application Data]

QUIC
start

QUIC
generate
token

QUIC
check
token

Figure 3: UDP+QUIC 1-RTT full handshake. * indicates optional messages. {} and [] repectively
indicate messages protected with initial and final keys.

Client Server

ClientHello, STK=stk
{Application Data*}

{ServerHello}

[Application Data]

QUIC
start

QUIC
check
token

Figure 4: UDP+QUIC 0-RTT resumption handshake. * indicates optional messages. {} and []
repectively indicate messages protected with initial and final keys.

For repeated connections to the same server it also provides (7) 0-RTT connections, enabling useful
data to be sent in the first round trip. In short, QUIC provides a very similar set of services to
TFO+TLS 1.3.

Instead of modifying TCP to enable 0-RTT connection establishment, QUIC replaces TCP entirely,
using UDP to provide application multiplexing and enabling it to traverse the widest possible swath
of the Internet. QUIC then provides all other guarantees itself.

QUIC packets contain a public header and a set of frames that are encrypted and authenticated
after initial connection setup. The header contains a set of public flags, a unique 64bit connection
identifier referred to as cid, and a variable length packet number. All other protocol information is
carried in control and stream (data) frames that are encrypted and authenticated.

To provide 0-RTT, QUIC caches important information about the server that will enable the client
to determine the encryption key to be used for each new connection. As shown in Fig. 3, the first
time a client contacts a given server it has no cached information, so it sends an empty (Inchoate)
ClientHello message. The server responds with a ServerReject message containing the server’s
certificate and three pieces of information for the client to cache. The first of these is an object called
an scfg, or server config. The scfg contains a variety of information about the server, including a
Diffie-Hellman share from the server, supported encryption and signing algorithms, and flow control
parameters. This scfg has a defined lifetime and is signed by the server’s private key to enable
authentication using the server’s certificate. Along with the scfg, the server sends the client a source-
address token or stk. The stk is used to prevent IP spoofing. It contains an encrypted version of the
client’s IP address and a timestamp.

With this cached information, a client can establish an encrypted connection with the server. It
first ensures that the scfg is correctly signed by the server’s certificate which is valid and then sends
a ClientHello indicating the scfg its using, the stk value it has cached, a Diffie-Hellman share
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for the client, and a client nonce. After sending the ClientHello, the client can create an initial
encryption key and send additional encrypted Application Data packets. In fact, to take advantage
of the 0-RTT connection establishment it must do so. When the server receives the ClientHello

message, it validates the stk and client nonce parameters and creates the same encryption key using
the server share from the scfg and the client’s share from the ClientHello message.

At this point, both client and server have established the connection and setup encryption keys and
all further communication between the parties is encrypted. However, the connection is not forward
secure yet, meaning that compromising the server would compromise all previous communication
because the server’s Diffie-Hellman share is the same for all connections using the same scfg. To
provide forward secrecy for all data after the first RTT, the server sends a ServerHello message after
receiving the client’s ClientHello which contains a newly generated Diffie-Hellman share. Once the
client receives this message, client and server derive and begin using the new forward secure encryption
key.

For the client that has connected to a server before, it can instead initiate a resumption connection.
This consists of only the last two steps of a full connection, sending the ClientHello and ServerHello

messages as shown in Fig. 4.

2.3 QUIC with TLS 1.3 Key Exchange over UDP

A new version of QUIC [27], which also supports 0-RTT, describes several improvements of the
previous design. The most important change is replacing QUIC’s key exchange with the one from
TLS 1.3, as specified in the latest Internet draft [57]. We provide more details (e.g., about its new
stateless reset feature) in Section 5.

3 Preliminaries

Notations. Let {0, 1}∗ denote the set of all finite-length binary strings (including the empty string
ε) and {0, 1}n denote the set of n-bit binary strings. [n] denotes the set of integers {1, 2, . . . , n}. For

a finite set R, let |R| denote its size and r
$← R denote sampling r uniformly at random from R. For

a binary string s, let |s| denote its length in bits. y ← F (x) (resp. y
$← F (x)) denotes y being the

output of the deterministic (resp. probabilistic) function F with input x. Let x← a denote assigning
value a to variable x. We use the wildcard · to indicate any valid input of a function.

Public Key Infrastructure. For simplicity, we assume the public keys used in our analysis are
supported by a public key infrastructure (PKI) and do not consider certificates or certificate checks
explicitly. In other words, we assume each public key is certified and bound to the corresponding
party’s identity.

PRF and AEAD. In Appendix B we recall the security definitions of a pseudorandom function
(PRF) F and a stateful authenticated encryption with associated data (AEAD) scheme sAEAD with
authentication level al ∈ [4] (i.e., protecting against the first al types of the following attacks: forgeries,
replays, reordering, or dropping). Accordingly, there we provide the definitions for the corresponding

advantages: Advprf
F (A),Advaead-al

sAEAD (A). We also refer to [52] for the syntax and security definitions of
a nonce-based AEAD scheme.

4 msACCE Protocol and its Security

In this section, we define the syntax and two security models for Multi-Stage Authenticated and
Confidential Channel Establishment (msACCE) protocols.
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4.1 Protocol Syntax

Our msACCE protocol is an extension to the Quick Connection (QC) protocol proposed by Lychev et
al. [41] and the Multi-Stage Key Exchange (MSKE) protocol proposed by Fischlin and Günther [21]
(and further developed by [18, 19, 39, 22]). Even though the authors of [41] claimed their QC protocol
syntax to be general, TLS 1.3 does not fit it well because TLS 1.3 has two initial keys and one final
key in 0-RTT resumption while QC captures only one initial key. On the other hand, the MSKE
protocol and its extensions focus only on the key exchange phases.

Our msACCE protocol syntax inherits many parts of the QC protocol syntax but extends it to
a multi-stage structure and additionally covers session resumptions (explicitly, unlike QC), session
resets, and header-only packets exchanged in secure channel phases. The detailed protocol syntax is
defined below.

A msACCE protocol is an interactive protocol between a client and a server. They establish keys
in one or more stages and exchange messages encrypted and decrypted with these keys. Messages
are exchanged via packets. A packet consists of source and destination IP addresses1 IPs, IPd ∈
{0, 1}32 ∪ {0, 1}64, a header, and a payload. Each party P has a unique IP address IPP .

The protocol is associated with the security parameter λ ∈ N+, a key generation algorithm Kg
that takes as input 1λ and outputs a public and secret key pair, a header space2 (for transport
and application layers) H ⊆ {0, 1}∗, a payload space PD ⊆ {0, 1}∗, header and payload spaces
Hrst ⊆ H,PDrst ⊆ PD for reset packets (described later), a resumption state space RS ⊆ {0, 1}∗,
a stateful AEAD scheme3 sAEAD = (sG, sE, sD) (with a key space K = {0, 1}λ, a message space
M ⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a state space ST ⊆ {0, 1}∗), disjoint4

message spacesMKE,MSC,MpRST ⊆M withMKE,MSC for messages encrypted during key exchange
and secure channel phases respectively andMpRST for pre-reset messages (described later) encrypted
in a secure channel phase, a server configuration generation function scfg gen described below.

The protocol’s execution is associated with the universal notion of time divided into discrete periods
τ1, τ2, . . .. During its execution, both parties can keep states that are initialized to the empty string ε.
In the beginning of each time period, the protocol may periodically update each server’s configuration
state scfg with scfg gen (which takes as input 1λ, a server secret key, and a time period, then outputs
a server configuration state). Otherwise, scfg gen is undefined and without loss of generality the
protocol is executed within a single time period.

A reset packet enables a sender, who lost its session state due to some error condition (e.g., server
reboots, denial-of-service attacks, etc.), to abruptly terminate a session with the receiver. A pre-reset
message (e.g., a reset token in QUIC[TLS]) is sent to the receiver in a secure channel phase5 before
the sender loses its state in order to authenticate the sender’s reset packet. Each session has at most
one pre-reset message for each party. A non-reset packet is not a reset packet. A header-only packet
has no payload.

We say a party rejects a packet if its processing the packet leads to an error (defined according to
the protocol), and accepts it otherwise.

The protocol has two modes, full and resumption. Its corresponding executions are referred to as
the full and resumption sessions. Each resumption session is associated with a single previous full
session and we say the resumption session resumes its associated full session. In the beginning of a
full or resumption session, each party takes as input a list of messages6 Msnd = (M1, . . . ,Ml),Mi ∈

1For the network-layer protocols, we only consider the Internet Protocol and its IP address header fields because our
model mainly focuses on the application and transport layers and additionally only captures the IP-spoofing attack.

2Some protocol header fields (e.g., port numbers, checksums, etc.) can be excluded if they are not the focus of the
security analysis.

3To fit TLS 1.3’s encryption scheme, unlike QACCE we model QUIC’s encryption scheme as a more general stateful
AEAD scheme rather than a nonce-based one.

4Disjointness is a reasonable assumption as practical protocols (such as those in Table 1) enforce different leading
bits for different types of messages.

5A pre-reset message can also be carried within an encrypted key exchange packet. We consider it encrypted as a
separate secure channel packet to get a clean packet-authentication security model described later.

6For simplicity, we consider transportation of atomic messages rather than a data stream that can be modeled as a
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MSC, l ∈ N (where the total message length |Msnd| is polynomial in λ and Msnd can be empty) as
well as the other party’s IP address. In a full session, the server runs Kg(1λ) to generate a public and
secret key pair and sends its public key to the client as input. In a resumption session, each party
additionally takes as input its own resumption state rs ∈ RS (set in the associated full session). In
either case, the client sends the first packet to start the session.

A D-stage msACCE protocol consists of D ∈ N+ successive stages and each stage, e.g., the d-th
(d ∈ [D]) stage, consists of one or two phases described as follows:

1) Key Exchange. At the end of this phase each party sets its d-th stage key kd = (kdc , k
d
s ). At

most one of kdc and kds can be ⊥, i.e., unused.7 If this is the final stage in a full session, each party can
send additional messages8 inMKE encrypted with kd and by the end of this phase each party sets its
own resumption state.

2) Secure Channel. This phase is mandatory for the final stage but optional for other stages. In
this phase, the parties can exchange messages from their input lists as well as pre-reset messages,
encrypted and decrypted using the associated stateful AEAD scheme with kd. The client uses kdc to
encrypt and the server uses it to decrypt, whereas the server uses kds to encrypt and the client uses
it to decrypt. They may also send reset or header-only packets. At the end of this phase, each party
outputs a list of received messages (which may be empty) Mrcv

i = (M ′1, . . . ,M
′
l′i

), l′i ∈ N, M ′i ∈MSC.

Each message exchanged between the parties must belong to some unique phase at some unique
stage. One stage’s second phase and the next stage’s first phase may overlap, and the two phases in
the final stage may also overlap. We call the final stage key the session key and the other stage keys
the interim keys.

Correctness. Consider a client and a server running a D-stage msACCE protocol in either mode
without sending any reset packet. Each party’s input message list Msnd, in which the messages are
sent among D stages according to any partitioning Msnd = Msnd

1 , . . . ,Msnd
D , is equal to the other

party’s total output message list Mrcv = Mrcv
1 , . . . ,Mrcv

D , in which the message order is preserved.
Each party terminates its session upon receiving the other party’s reset packet.

Remark. With our more general protocol syntax, the ACCE [28] and QC [41] protocols can be
classified into 1-stage and 2-stage msACCE protocols respectively.

4.2 Security Models

We propose two security models respectively for basic authenticated and confidential channel security
and packet authentication. Our models do not consider the key exchange and secure channel phases
independently, as was the case for some previous QUIC and TLS 1.3 security analyses [21, 18, 19, 39,
22], because QUIC’s key exchange and secure channel phases are inherently inseparable and the TLS
1.3 full handshake does not fit into a composability framework, as discussed in [41, 19].

1) msACCE Standard Security Model:
In this msACCE standard (msACCE-std) security model, we consider the standard security goals

such as server authentication9 and channel security (which captures data privacy and integrity) for
msACCE protocols. Our msACCE-std model is very similar to the standard security portion of the
QACCE model [41], but extends it to capture more (rather than two) stages and use a more general
stateful encryption scheme to fit both TLS 1.3 and QUIC.

Like QACCE and other previous models, we consider a very powerful adversary who can control
communications between honest parties, can adaptively learn their stage keys, and can adaptively
corrupt servers to learn their long-term keys and secret states.

stream-based channel [23] and later extended to capture multiplexing [45].
7This captures the case where a 0-RTT key only consists of a client encryption key while the server encryption key

does not exist.
8This captures the post-handshake key exchange messages that are used for session resumption, post-handshake

authentication, key update, etc.
9Our msACCE-std model focuses on the most common server authentication, but can be extended to mutual au-

thentication, e.g., as described in [34].
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Our detailed security model is defined below.

Protocol Entities. The set of parties P consists of two disjoint type of parties: clients C and servers
S, i.e., |P| = |C|+ |S|.
Session Oracles. To capture multiple sequential and parallel protocol executions, each party P ∈ P
is associated with a set of session oracles π1

P , π
2
P , . . ., where πiP models P executing a protocol instance

in session i ∈ N+.

Matching Conversations. As part of the security model, matching conversations are used to model
entity authentication, session key confirmation, and handshake integrity. A client (resp. server) oracle
has a matching conversation with a server (resp. client) oracle if and only if both session oracles observe
the same10 session identifier sid defined according to the protocol specifications and security goals.
Note that a msACCE protocol may have two different session identifiers in full and resumption modes,
but for simplicity we use the same notation sid. Compared to the general definition of matching
conversations [6, 28], sid is often defined as a subset of the whole communication transcript. For
instance, QUIC’s sid in QACCE [41] is defined as the second-round key exchange messages, i.e.,
ClientHello and ServerHello, while the first-round messages are excluded to allow for valid but
different source-address tokens or signatures. Similarly, TLS 1.2’s sid in ACCE [34] is defined as the
first three key exchange messages, while the rest are excluded to allow for valid but different encrypted
Finished messages.

Peers. We say a client oracle and a server oracle are each other’s peer if they observe the same
first-stage session identifier sid1 (i.e., sid restricted to the first stage), which intuitively means that
they set the first stage key with each other. Note that a client oracle may have more than one peers
if sid1 consists of only message(s) sent from the client oracle, which can be replayed to the same11

server to establish multiple (identical) first-stage keys. Therefore, a session oracle’s peer may not be
its final unique communication partner. Instead, the real partner is the session oracle with which the
oracle has a matching conversation.

Security Experiments. In the beginning of the experiments, run Kg(1λ) for all servers to generate
the public and secret key pairs and initialize the global states of all parties and the local states of
all session oracles. In the beginning of each time period, run scfg gen (if defined) for each server to
update its configuration state scfg. We assume that both the server oracles and the adversary A are
aware of the current time period. Let N ∈ N+ denote the maximum number of msACCE protocol
instances for each party and D ∈ N+ denote the maximum number of stages in each session. The
channel security experiment is associated with an authentication level al ∈ [4]. Each oracle πiP at

stage d is associated with a random bit bi,dP
$← {0, 1}. Each oracle πiP has a global state m̃ (initialized

to ⊥) that stores its pre-reset message. The adversary A is given all public keys and the IP addresses
associated with all parties and then interacts with the session oracles via the following queries:
• Connect(πiC , π

j
S), for C ∈ C, S ∈ S, i, j ∈ [N ].

This query asks πiC to output the first packet that it would send to πjS in a full session according to

the protocol if neither of πiC , π
j
S was used (i.e., as input of previous Connect,Resume,Send queries).

This output packet is not delivered to πjS , but is returned to A. After this query, we say S is the
target server of πiC .

This query allows the adversary to ask a specified client oracle to start a full session with a specified
server oracle.
• Resume(πiC , π

j
S , i
′), for C ∈ C, S ∈ S, i, j, i′ ∈ [N ], i′ < i.

This query asks πiC to output the first packet that it, taking πi
′

C ’s resumption state as input, would

10As discussed in [28], two session oracles having matching conversations with each other may not observe the same
transcript due to the gap between one oracle sending a message and the other receiving it. We can use symmetric session
identifiers to define matching conversations because our msACCE-std model focuses only on server authentication and
we require session identifiers to exclude, if any, a client oracle’s last key exchange message(s) sent immediately before it
sets its session key.

11In practice, 0-RTT replay attacks can be mounted to different servers with the same public-secret key pair. However,
0-RTT key exchange message(s) replayed to other servers with different public-secret key pairs will be rejected.
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send to πjS in a resumption session according to the protocol (if neither of πiC , π
j
S was used) and

returns this packet to A, if πi
′

C has set its resumption state in a previous full session with its target
server S. Otherwise, it returns ⊥.

This query allows the adversary to ask a specified client oracle to start a resumption session with
a specified server oracle to resume a specified full session between the two parties, if the associated
previous client oracle has set its resumption state.
• Send(πiP , pkt), for P ∈ P, i ∈ [N ], pkt ∈ {0, 1}∗.
This query sends pkt to πiP and returns its response if πiP is in a key exchange phase, otherwise,
returns ⊥.

This query allows the adversary to send any packet to a specified session oracle and get its response
in a key exchange phase.
• Reveal(πiP , d), for P ∈ P, i ∈ [N ], d ∈ [D].
This query returns πiP ’s (perhaps unset) stage-d key kd. After this query, we say kd was revealed.

This query allows the adversary to learn any stage key of a specified session oracle.
• Corrupt(S), for S ∈ S.
This query returns S’s secret key and all its current states including its scfg and resumption states
(for all full sessions involving S) in the current time period. After this query, we say S was corrupted.

This query allows the adversary to learn the long-term secret along with all current states of a
specified server.
• Encrypt(πiP , d, ad,m0,m1), for P ∈ P, i ∈ [N ], d ∈ [D], ad ∈ AD,m0,m1 ∈MSC ∪MpRST ∪ {rst}.
This query proceeds as follows:

1: if m0,m1 are of different types (i.e., MSC or MpRST or {rst}) or |m0| 6= |m1| or πiP is not in its
d-th secure channel phase or kdp = ⊥ (where p = c if P ∈ C and p = s if P ∈ S), return ⊥

2: if m0 = m1 = rst, return m̃
3: if m0,m1 ∈MpRST, return ⊥ if m̃ 6= ⊥ or set m̃← mbi,dP

otherwise

4: (upon setting each encryption stage key, initialize ste ∈ ST , u← 0, sent← ε)

5: u← u+ 1, (sent.ctu, st
′
e)

$← sE(kdp , ad,mbi,dP
, ste)

6: (sent.adu, ste)← (ad, st′e)
7: return sent.ctu

This query allows the adversary to specify any associated data and any two secure channel or
pre-reset messages of the same length, then get the ciphertext of one message determined by bi,dP , a
random bit associated with the specified session oracle at the specified stage. This query also stores
the pre-reset message and returns it when the input is rst. (Recall that each oracle has at most one
pre-reset message, so this query stores only the first pre-reset message and rejects others.)
• Decrypt(πiP , d, ad, ct), for P ∈ P, i ∈ [N ], d ∈ [D], ad ∈ AD, ct ∈ {0, 1}∗.
This query proceeds as follows:

1: if πiP is not in its d-th secure channel phase or kdp = ⊥ (where p = c if P ∈ C and p = s if P ∈ S),
return ⊥

2: (upon setting each decryption stage key, initialize std ∈ ST , v ← 0, rcvd← ε, outofsync← 0)
3: v ← v + 1, rcvd.ctv ← ct, (m, st′d)← sD(kdp , ad, ct, std)
4: (rcvd.adv, std)← (ad, st′d)
5: if m 6∈ MSC ∪MpRST, set m← ⊥
6: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m 6= ⊥) ∧ condal,

set outofsync← 1
7: if outofsync = 1, return bi,dP , otherwise, return ⊥

This query allows the adversary to specify any associated data and any ciphertext to be decrypted
by the peer(s) of the specified session oracle at the specified stage, then get the secret bit bi,dP if and
only if this query is “out-of-sync”, otherwise, it still gets ⊥ (to avoid trivial wins). The “out-of-
sync” condition (see line 6) captures different authentication levels. For conciseness, we list only the
authentication conditions for level 1 and 4 (refer to [9] for level 2 and 3) as follows:
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cond1 = (@w : (ct = sent.ctw) ∧ (ad = sent.adw))

cond4 = (u < v) ∨ (ct 6= sent.ctv) ∨ (ad 6= sent.adv)
Note that cond1 corresponds to the lowest authentication level (e.g., for the stateful AEAD scheme
in QUIC) that only guarantees no forgeries, while cond4 corresponds to the highest authentication
level (e.g., for the stateful AEAD scheme in TLS 1.3) that prevents forgeries, replays, reordering, and
dropping.

Advantage Measures. An adversary A against a msACCE protocol Π in msACCE-std has the
following advantage measures.
• Server Authentication. We define Advs-auth

Π (A) as the probability that there exist a client oracle πiC
and its target server S such that the following holds:

1. πiC has set its session key;

2. S was not corrupted before πiC set its session key;

3. No interim keys of πiC or its peer(s) were revealed;12

4. There is no unique server oracle πjS with which πiC has a matching conversation.

The above captures the attacks in which the adversary impersonates a server to make the client
mistakenly believe that it shares the session key with the server.
• (level-al) Channel Security. We define Advcs-al

Π (A) as |2 Pr[bi,dP = b′]−1|, where al ∈ [4] is a specified
authentication level and (P, i, d, b′) is output by A, such that the following holds:

1. If P = S ∈ S, πiS has a matching conversation with a client oracle πjC ; if P = C ∈ C, denote S
as πiC ’s target server;

2. S was not corrupted before πiP set its last stage key; If forward secrecy is not required for the
d-th stage keys, S was not corrupted in the same time period associated with πiP ;

3. No stage keys of πiP or its peer(s) were revealed;

4. If two different pre-reset messages were queried in the d-th stage, later no Encrypt(πiP , ·, ·, rst, rst)
queries were made.

The above captures the attacks in which the adversary compromises the privacy or integrity of
secure channel messages without revealing stage keys or revealing the hidden pre-reset message or
corrupting the server before the client set its last stage key (which may not be the session key). If
the stage key at the target stage is not supposed to provide forward secrecy, the adversary is further
restricted not to corrupt the server during the same associated time period of the target session.

2) msACCE Packet-Authentication Security Model:
In this msACCE packet-authentication (msACCE-pauth) security model, we consider security

goals related to packet authentication beyond those captured by the msACCE-std model. Note that
msACCE-std essentially focuses only on the packet fields in the application layer, while msACCE-
pauth further covers transport-layer headers and IP addresses.

First, we consider IP spoofing prevention (a.k.a. source authentication) as with the QACCE
model, but, as illustrated later, generalize one of the QACCE queries to additionally capture IP
spoofing attacks in the full sessions. Then, more importantly, we define four novel packet-level security
notions (elaborated later): KE Header Integrity, KE Payload Integrity, SC Header Integrity, and Reset
Authentication, which enable a comprehensive and fine-grained security analysis of layered protocols.

In particular, KE Header and Payload Integrity respectively capture the header and payload
integrity of key exchange packets. Such security issues have not been investigated before and, as we
show later, lead to new availability attacks for both TFO+TLS 1.3 and UDP+QUIC. Furthermore,

12More precisely, we allow revealing other stage keys (if any), except the first stage key, of a πi
C ’s peer which observes

the same session identifier at only the first stage but not the next one, because such a peer’s key exchange message is
never received by πi

C . Similar condition relaxation also holds for our other security notions.
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we employ SC Header Integrity to capture the header integrity of non-reset packets in secure channel
phases. Note that, unlike the availability attacks shown in [41], successful attacks breaking our security
notions are harder or impossible to detect by the client as they do not affect the client’s session
key establishment, so they are more harmful in this sense. Finally, our model captures malicious
undetectable session resets in a secure channel phase with Reset Authentication.

As with the msACCE-std model, msACCE-pauth captures multiple stages and considers a very
powerful adversary. It also inherits the same definitions of protocol entities, session oracles, matching
conversations, and peers.

Security Experiments. Consider the same experiment setups as in msACCE-std, except that no
random bit bi,dP is needed. The adversary A is given all the public parameters and interacts with
the session oracles via the same Connect,Resume,Send,Reveal,Corrupt queries as in the msACCE-std
model13, as well as the following:
• Connprivate(πiC , π

j
S , cmp), for C ∈ C, S ∈ S, i, j ∈ [N ], cmp ∈ {0, 1}.

This query always returns ⊥. If cmp = 1, πiC and πjS establish a complete full session privately without

showing their communication to the adversary. If cmp = 0, πiC and πjS establish a partial full session

privately such that the last packet sent from πiC right before πjS sets its first stage key is blocked.
This query allows the adversary to establish a complete or partial full session between any client

and server oracles without observing their communication. By taking an additional flag cmp as input,
this query extends the QACCE Connprivate query [41] to model IP-spoofing attacks happening in both
full and resumption sessions.
• Pack(πiP , ad,m), for P ∈ P, i ∈ [N ], ad ∈ AD,m ∈MSC ∪ {prst, rst}.
This query returns ⊥ if πiP is not in a secure channel phase. If m ∈ MSC, it asks πiP to output the
packet that it would send to its peer(s) for the specified associated data ad and message m according
to the protocol, then returns this packet. If m = prst, πiP generates its pre-reset message (if any,
hidden from the adversary), encrypts it with the specified associated data ad, and outputs the resulting
packet, then this packet is returned. (Recall that each oracle has at most one pre-reset message, so
m = prst is allowed to be queried at most once per session oracle.) If m = rst, this query asks πiP
to output its reset packet (if any) and returns it.

This query allows the adversary to specify any associated data and any message in a secure channel
phase, then get the packet output by the specified session oracle. The adversary can also specify a
session oracle to get the packet resulting from encrypting the session oracle’s pre-reset message (which
the adversary does not know) or get its reset packet.
• Deliver(πiP , pkt), for P ∈ P, i ∈ [N ], pkt ∈ {0, 1}∗.
This query returns ⊥ if πiP is not in a secure channel phase. Otherwise, it delivers pkt to πiP and
returns its response.

This query allows the adversary to deliver any packet to a specified session oracle and get its
response in a secure channel phase.

Advantage Measures. An adversary A against a msACCE protocol Π in msACCE-pauth has the
following associated advantage measures.

• IP-Spoofing Prevention. We define Advipsp
Π (A) as the probability that there exist a client oracle πiC

and a server oracle πjS such that the following holds:

1. πjS has set its first stage key right after a Send(πjS , (IPC , IPS , ·, ·)) query;

2. S was not corrupted before πjS set its first stage key;

3. The only allowed queries concerning both C and S in the time period associated with πjS are:

- Connprivate(πxC , π
y
S , ·) for any x, y ∈ [N ], and

13Note that Encrypt and Decrypt queries are not needed because msACCE-pauth does not consider data privacy
explicitly.
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- Send(πyS , (IPC , IPS , ·, ·)) for any y ∈ [N ], where (IPC , IPS , ·, ·) is the last packet received by
πyS right before it sets its first stage key.

The above captures the attacks in which the adversary fools a server into accepting a spurious
connection request seemingly from an impersonated client, without observing any previous communi-
cation between the client and server in the same time period.

• KE Header Integrity. We define Advint-keh
Π (A) as the probability that there exist a client oracle πiC

and a server oracle πjS such that the following holds:

1. πiC has set its session key and has a matching conversation with πjS ;

2. S was not corrupted before πiC set its session key;

3. No interim keys of πiC or its peer(s) were revealed;

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted a packet with a

new header that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the protocol header of a key
exchange packet of the communicating parties without affecting the client setting its session key. In
the above definition, we assume that a client sets its session key immediately after sending its last key
exchange packet(s) (if any). Then, a forged packet that leads to a successful attack cannot be any of
these last packet(s), which have not yet been sent to the server. The same assumption is made for
KE Payload Integrity defined below.

• KE Payload Integrity. We define Advint-kep
Π (A) as the probability that there exist a client oracle πiC

and a server oracle πjS such that the same (1)∼(3) conditions as in the above KE Header Integrity
notion hold and the following holds:

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted a packet with a

new payload that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the payload of a key exchange
packet of the communicating parties without affecting the client setting its session key.

• SC Header Integrity. We define Advint-h
Π (A) as the probability that A outputs (P, i, d) such that

the same (1)∼(3) conditions as in the Channel Security notion hold and the following holds:

4. In the secure channel phase of the d-th stage, πiP accepted a non-reset packet with a new header
that was not output by its peer(s) (via Pack queries), or πiP accepted a non-reset header-only
packet.

The above captures the attacks in which the adversary creates a valid non-reset secure channel
packet by forging the protocol header without breaking any Channel Security conditions. Note that in
the above security notion an invalid header forgery is detected immediately after the malicious packet
is received and processed, while the detection of invalid packet forgeries in a key exchange phase (e.g.,
for plaintext packets) can be delayed to the point when the client sets its session key, according to
the definitions of KE Header and Payload Integrity.

• Reset Authentication. We define Advrst-auth
Π (A) as the probability that A outputs (P, i, d) such that

the same (1)∼(3) conditions as in the Channel Security notion hold and the following holds:

4. In the secure channel of the d-th stage, πiP accepted a packet output by a Pack(·, ·, prst) query

to its peer πjP ′ . Later (in the d-th or a later stage), πiP accepted a reset packet but A made no

Pack(πjP ′ , ·, rst) queries.
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The above captures the attacks in which the adversary forges a valid reset packet without breaking
any Channel Security conditions. Note that such attacks are undetectable by the accepting party, as
opposed to a network attacker that simply drops packets.

We say a msACCE protocol Π achieves a security notion in our msACCE security models if the
associated advantage is negligible (in λ) for any probabilistic-polynomial-time (PPT) A.

Remark about msACCE Security Model Completeness and Low-Layer Integrity. Note
that the payload integrity in secure channels is captured by Channel Security. Our msACCE-std and
msACCE-pauth models completely capture the authentication (or integrity) of all packet fields in the
transport and application layers. Furthermore, msACCE-pauth captures (network-layer) IP-Spoofing
Prevention against weaker off-path attackers (i.e., those can only inject packets without observing
the communication), but leaves other integrity attacks on low layers (e.g., network, link, and physical
layers) uncovered. Such attacks may affect packet forwarding, node-to-node data transfer, or raw data
transmission, which are outside the scope of our work.

5 Provable Security Analysis

Equipped with msACCE security models, we now analyze and compare the security of TFO+TLS 1.3,
UDP+QUIC, and UDP+QUIC[TLS]. The security results are summarized in Table 2. As mentioned
in the Introduction, by [22] results, no protocol achieves forward secrecy for 0-RTT keys or protects
against 0-RTT data replays (which contribute to the first two rows in the table). We now move to
the detailed analyses and start with TFO+TLS 1.3.

Table 2: Security Comparison
TLS 1.3 QUIC QUIC[TLS]
+TFO +UDP +UDP

0-RTT Key Forward Secrecy [22] 7 7 7

0-RTT Data Anti-Replay [22] 7 7 7

Server Authentication 3 3 3

Channel Security 3 3 3

IP-Spoofing Prevention 3 3 3

KE Header Integrity 7 7 7

KE Payload Integrity 3 7 7

SC Header Integrity 7 3 3

Reset Authentication 7 7 3

5.1 TLS 1.3 over TFO

1) Protocol: Referring to the msACCE protocol syntax, a TFO+TLS 1.3 2-RTT full handshake
(see Fig. 1) is a 2-stage msACCE protocol in the full mode and a 0-RTT resumption handshake (see
Fig. 2) is a 3-stage msACCE protocol in the resumption mode. Note that we focus only on the
main components of the handshakes and omit more advanced features such as 0.5-RTT data, client
authentication, and post-handshake messages (except NewSessionTicket). In a full handshake, the
initial keys are set after sending or receiving ServerHello and the final keys (i.e., session keys) are
set after sending or receiving ClientFinished (but only handshake messages up to ServerFinished

are used for final key generation). In a 0-RTT resumption handshake, the parties set 0-RTT keys to
encrypt or decrypt 0-RTT data, after sending or receiving ClientHello.

According to the TFO and TLS 1.3 specifications [14, 51], the TFO+TLS 1.3 header contains
the TCP header (see Fig. 5 in Appendix A). We ignore some uninteresting header fields such as port
numbers and the checksum because modifying them only leads to redirected or dropped packets. Such
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adversarial capabilities are already considered in the msACCE security models. We thus define the
header space H as containing the following fields: a 32-bit sequence number sqn, a 32-bit acknowledg-
ment number ack, a 4-bit data offset off, a 6-bit reserved field resvd, a 6-bit control bits field ctrl,
a 16-bit window window, a 16-bit urgent pointer urgp, a variable-length (≤ 320-bit) padded options
opt. For encrypted packets, H additionally contains the TLS 1.3 record header fields: an 8-bit type
type, a 16-bit version ver, and a 16-bit length len. We further define reset packets as those with the
RST bit (i.e., the 4-th bit of ctrl) set to 1. Note that scfg gen is undefined.

TLS 1.3 enforces different content types for encrypted key exchange and secure channel messages.
For simplicity, we defineMKE andMSC as consisting of bit strings differing in their first bits. MpRST =
∅. In Appendix C, we define TLS 1.3’s stateful AEAD scheme sAEADTLS = (sG, sE, sD) based on the
underlying nonce-based AEAD scheme AEAD = (G,E,D) (instantiated with AES-GCM [42] or others
as documented in [51]).

We refer to Appendix E for the remaining details of TFO and refer to [22, 10] for the detailed
descriptions of TLS 1.3 handshake messages and key generations in earlier TLS 1.3 drafts as well as
[51] for the latest updates.

2) Security: TFO+TLS 1.3’s session identifier sidTLS is defined as all key exchange messages from
ClientHello to ServerFinished, excluding TCP headers and IP addresses. The msACCE-std secu-
rity of TFO+TLS 1.3 is by definition independent of TCP headers and is hence provided by the TLS
1.3 component. Previous works [20, 22, 39] only proved TLS 1.3’s authenticated key exchange security,
i.e., the stage keys are authenticated and indistinguishable from random ones under reasonable com-
putational assumptions. In Appendix D, we show one can adapt their security results to prove TLS
1.3’s Server Authentication and level-4 Channel Security in our msACCE-std model, by additionally
relying on the level-4 AEAD security of sAEADTLS (which can be reduced to the nonce-based AEAD
security of the underlying AEAD as shown in [17]).

The msACCE-pauth security analyses are shown as follows.

IP-Spoofing Prevention. This security of TFO+TLS 1.3 is provided by the TFO component
through TCP sequence number randomization and TFO cookies. By modeling the cookie generation
function, an AES-128 block cipher, as a PRF F : {0, 1}n × {0, 1}λ → {0, 1}n, we have the following
theorem with the proof in Appendix E:

Theorem 1 For any PPT adversary A making at most q Send queries, there exists a PPT adversary
B such that:

Advipsp
TFO+TLS 1.3(A) ≤ |S|Advprf

F (B) +
q

min{2|sqn|, 2n}
.

KE Header Integrity. TFO+TLS 1.3 does not achieve this security notion because TCP headers
are never authenticated. We find a new practical attack below, where a PPT adversary A can always
get Advint-keh

TFO+TLS 1.3(A) = 1:

TFO Cookie Removal. A can first make πi
′

C complete a full handshake with πj
′

S (via Connect,Send

queries), then query Resume(πiC , π
j
S , i
′) (i > i′, j > j′) to get the output packet (IPC , IPS , H, pd),

which is a SYN packet with a TFO cookie. A then modifies the opt field of H to get a new H ′ 6= H
that contains no cookie. The resulting SYN packet will be accepted by πjS , which will then respond
with a SYN-ACK packet that does not contain a TFO cookie, indicating a fallback to the standard
3-way TCP. As a result, a 1-RTT handshake is needed to complete the connection and any 0-RTT
data sent with SYN would be retransmitted. This eliminates the entire benefit of TFO without being
detected, resulting in reduced performance and increased handshake latency. A similar attack is
possible by removing the TFO cookie in a server’s SYN-ACK packet.

Interestingly, clients are supposed to cache negative TFO responses and avoid sending TFO connec-
tions again for a lengthy period of time. This is because the most likely explanation for this behavior
is that the server does not support TFO, but only standard TCP [14]. As a result, performing this
attack for a single connection prevents TFO from being used with this server for a lengthy time period
(i.e., days or weeks).
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KE Payload Integrity. TFO+TLS 1.3 is secure in this regard simply because sidTLS consists of
the payloads of all key exchange packets exchanged between the communicating parties before the
client set its session key. That is, for any client oracle that has a matching conversation with any
server oracle, by definition they observe the same sidTLS and hence no key exchange packet payload
can be modified, i.e., Advint-kep

TFO+TLS 1.3(A) = 0 for any PPT adversary A.

SC Header Integrity. TFO+TLS 1.3 does not achieve this security notion again because of the
unauthenticated TCP headers. A PPT adversary A can get Advint-h

TFO+TLS 1.3(A) = 1 by either
modifying the TCP header of an encrypted packet (e.g., reducing the window value) or by forging a
header-only packet (e.g., removing the payload of an encrypted packet and changing its ack value).
Such packets are valid and will be accepted by the receiving session oracle.

The above fact exposes the adversary’s ability to arbitrarily modify or even entirely forge the
information in the TCP header, which is being relied on to provide reliable delivery, in-order delivery,
flow control, and congestion control for the targeted flow. This leads to a whole host of availability
attacks that the networking community has been slowly uncovering via manual investigation over the
last 30 years [54, 31, 4, 13, 37, 36, 29, 49, 12, 25, 48, 43, 58, 30]. Some of the practical attacks are
described in Appendix F.

Reset Authentication. TFO+TLS 1.3 is insecure in this sense because its reset packet, TCP
Reset, is an unauthenticated header-only packet. This leads to a practical attack below, where a PPT
adversary A always gets Advrst-auth

TFO+TLS 1.3(A) = 1:
TCP Reset Attack. A can first make two session oracles complete a handshake using Connect,Send
queries, then use Pack,Deliver queries to let them exchange secure channel packets. By observing
these packet headers, A can easily forge a valid reset packet by setting its RST bit to 1 and the
remaining header fields to reasonable values. This attack will cause TCP to tear down the connection
immediately without waiting for all data to be delivered.

Note that even an off-path adversary who can only inject packets into the communication channel
may be able to accomplish this attack. The injected TCP reset packet needs to be within the receive
window for the client or server, but [58] demonstrated that a surprisingly small number of packets is
needed to achieve this, thanks to the large receive windows typically used by implementations.

5.2 QUIC over UDP

1) Protocol: Referring to the msACCE protocol syntax, an UDP+QUIC 1-RTT full handshake (see
Fig. 3) is a 2-stage msACCE protocol in the full mode and a 0-RTT resumption handshake (see
Fig. 4) is a 2-stage msACCE protocol in the resumption mode. The initial keys are set after sending
or receiving ClientHello and the final keys (i.e., session keys) are set after sending or receiving
ServerHello.

According to the UDP and QUIC specifications [53, 46, 38], the UDP+QUIC header contains the
UDP header (see Fig. 6 in Appendix A) and the QUIC header (described below). As with the TCP
header, we ignore the port numbers and checksum in the UDP header. Similarly, we also ignore the
UDP length field because it only affects the length of the QUIC header and payload. We thus can
completely omit the UDP header and define the header space H as containing the following fields: an
8-bit public flag flag, a 64-bit connection ID cid, a variable-length (≤ 48-bit) sequence number sqn,
and other optional fields. We further define reset packets as those with the PUBLIC FLAG RESET
bit (i.e., the 7-th bit of flag) set to 1. A reset packet header only contains flag and cid.

As with TLS 1.3, for UDP+QUIC we defineMKE andMSC as consisting of bit strings differing in
their first bits. MpRST = ∅. In Appendix C, we define QUIC’s stateful AEAD scheme sAEADQUIC =
(sG, sE, sD) based on the underlying nonce-based AEAD scheme AEAD = (G,E,D) (instantiated with
AES-GCM [42]).

We refer to [41] for the detailed descriptions of scfg gen and QUIC handshake messages and key
generations.
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2) Security: UDP+QUIC’s session identifier sidQUIC is defined as the ClientHello payload and
ServerHello, excluding IP addresses. The msACCE-std security of UDP+QUIC follows from prior
works as we discuss in Appendix G. Note that UDP+QUIC only achieves level-1 Channel Security,
but, as discussed in [41], QUIC implicitly prevents packet reordering by authenticating sqn in the
packet header. It also prevents replays and dropping with frame sequence numbers encrypted in the
payload. Therefore, UDP+QUIC essentially achieves level-4 authentication as TLS 1.3 does.

The msACCE-pauth security analyses are shown as follows.

IP-Spoofing Prevention. In [41], QUIC has been proven secure against IP spoofing based on the
AEAD security. Their IP-spoofing security notion is the same as our IP-Spoofing Prevention notion
for UDP+QUIC except that ours additionally captures attacks in full sessions. However, since source-
address tokens are validated in both full and resumption sessions, their results can be trivially adapted
to show that UDP+QUIC achieves IP-Spoofing Prevention.

KE Header and Payload Integrity. UDP+QUIC does not achieve these security notions because
its first-round key exchange messages, i.e., InchoateClientHello and ServerReject, and any invalid
ClientHello are not fully authenticated. Interestingly, a variety of existing attacks on QUIC’s avail-
ability discovered in [41] are all examples of key exchange packet manipulations (e.g., the server config
replay attack, connection ID manipulation attack, etc.), but these attacks cause connection failure
and hence are easy to detect. However, successful attacks breaking KE Header or Payload Integrity
will be harder (if not impossible) to detect.

For KE Header Integrity, we do not find any harmful attacks but theoretical attacks exist. For in-
stance, a PPT adversaryA can get Advint-keh

UDP+QUIC(A) = 1 as follows. A can first query Connect(πiC , π
j
S)

to get the output packet (IPC , IPS , H, pd), then modify the flag and sqn fields of H to get a new
header H ′ 6= H that only changes sqn’s length but not its value. The resulting packet will be accepted
by πjS . This attack has no practical impact on UDP+QUIC but it successfully modifies the protocol
header without being detected.

For KE Payload Integrity, we find a new practical attack described below where a PPT adversary
A can get Advint-kep

UDP+QUIC(A) ≈ 1:

ServerReject Triggering. A can first let πi
′

C complete a full handshake with πj
′

S with Connect,Send

queries, then query Resume(πiC , π
j
S , i
′) (i > i′, j > j′) to get the output ClientHello packet. A

then modifies its payload by replacing the source-address token stk with a random value, which with
high probability is invalid. Sending this modified packet to πjS will trigger a ServerReject packet
containing a new valid stk. This as a result downgrades the original 0-RTT resumption connection
to a full 1-RTT connection, which causes increased latency and results in the retransmission of any
0-RTT data. Note that this attack is hard to detect because πiC may think its original stk′ has expired
(although this does not happen frequently).

SC Header Integrity. UDP+QUIC is secure in this regard because it does not allow header-
only packets to be sent in the secure channel phases and the entire protocol header is taken as the
associated data authenticated by the underlying encryption scheme. Therefore, UDP+QUIC’s SC
Header Integrity can be reduced to its level-1 Channel Security. Formally, for any PPT adversary A
there exists a PPT adversary B such that Advint-h

UDP+QUIC(A) ≤ Advcs-1
UDP+QUIC(B).

Reset Authentication. UDP+QUIC does not achieve this security notion because, similar to TCP
Reset, its reset packet PublicReset is not authenticated either. In the following availability attack,
a PPT adversary A can always get Advrst-auth

UDP+QUIC(A) = 1:
PublicReset Attack. A can first make two session oracles complete a handshake using Connect,Send
queries, then use Pack,Deliver queries to let them exchange secure channel packets. By observ-
ing these packet headers, A can easily forge a valid (plaintext) reset packet by setting its PUB-
LIC FLAG RESET bit to 1 and the remaining packet fields to reasonable values (which is easy
because it simply contains the connection ID cid, the sequence number of the rejected packet, and a
nonce to prevent replay). This attack will cause similar effects as described in the TCP Reset attack.
Note that this vulnerability is fixed in QUIC[TLS] shown below.
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5.3 QUIC[TLS] over UDP

1) Protocol: As mentioned in the Background, QUIC[TLS] replaces QUIC’s key exchange with the
TLS 1.3 key exchange. So, as with TLS 1.3, a UDP+QUIC[TLS] 2-RTT full handshake is a 2-stage
msACCE protocol in the full mode and a 0-RTT resumption handshake is a 3-stage msACCE protocol
in the resumption mode. The stage keys are set in the same way as in TLS 1.3.

The header fields (as specified in [27]) are similar to those in UDP+QUIC. Reset packets are
defined as those whose first two header bits are 01. scfg gen is undefined. UDP+QUIC[TLS] also
enforces different frame types for encrypted key exchange, secure channel, and pre-reset messages.
For simplicity, we define MKE,MSC,MpRST as consisting of bit strings differing in their first two
bits. UDP+QUIC[TLS]’s stateful encryption scheme is the same as sAEADQUIC based on the under-
lying nonce-based AEAD scheme AEAD = (G,E,D) (instantiated with AES-GCM [42] or others as
documented in [51]).

QUIC[TLS] still provides source validation with a secure token generated by the server, similar to
the case in Google’s QUIC. We discuss QUIC[TLS]’s stateless reset mechanism later in the security
analysis of Reset Authentication and refer to [27, 57] for the detailed UDP+QUIC[TLS] handshake
messages and key generations.

2) Security: UDP+QUIC[TLS]’s session identifier sidQUIC[TLS] is defined as sidTLS. By construct-
ion, UDP+QUIC[TLS] inherits the msACCE-std security from TLS 1.3 (but using QUIC’s underlying
encryption scheme). That is, it achieves level-1 Channel Security and implicitly achieves level-4 au-
thentication as discussed before. UDP+QUIC[TLS] has a similar source-validation token scheme as
QUIC. If the token is generated with an authenticated encryption scheme, the IP-Spoofing Prevention
security of UDP+QUIC[TLS] can be reduced to the encryption scheme’s authenticity security. How-
ever, such a source-validation scheme suffers from an availability attack against KE Payload Integrity
similar to ServerReject Triggering for UDP+QUIC, where the adversary replaces the source-validation
token with a random value to downgrade a 0-RTT resumption connection. As noted in [57], an adver-
sary can also modify the unauthenticated ACK frames in the Initial packets without being detected.
Furthermore, UDP+QUIC[TLS] achieves SC Header Integrity in the same way as UDP+QUIC. We
are only left to show its security of KE Header Integrity and Reset Authentication.

KE Header Integrity. UDP+QUIC[TLS] does not achieve these security notions because its first-
round Initial packets (see [27]) are not fully authenticated. For instance, a PPT adversary A can
get Advint-keh

UDP+QUIC[TLS](A) = 1 as follows. A first queries Connect(πiC , π
j
S) to get πiC ’s Initial packet

(IPC , IPS , H, pd). Then, as described in [57], A can decrypt this packet with its Destination Con-
nection ID dcid in H, change it to another value dcid′, and re-encrypt the whole packet with this
new dcid′. The resulting packet (IPC , IPS , H

′, pd′), where H 6= H ′, is valid and will be accepted by
πjS without being detected by the client. However, this is only a theoretical attack with no practical
impact.

Reset Authentication. In UDP+QUIC[TLS], the stateless reset works as follows. One party
generates a 128-bit reset token using its static key and a random 64-bit cid as input. Then this token
(carried within the pre-reset message) is sent to the other party in a secure channel phase. Later,
the same party that generated this token can perform a stateless reset by regenerating the token and
sending it to the other party in clear (via a reset packet).

The Reset Authentication security of UDP+QUIC[TLS] can be reduced to its level-1 Channel
Security and the PRF security of the reset token generation function F : {0, 1}|cid|×{0, 1}λ → {0, 1}n
as shown in the theorem below with the proof in Appendix H:

Theorem 2 For any PPT adversary A delivering at most q forged reset packets (via Deliver queries),
there exist PPT adversaries B and C such that:

Advrst-auth
UDP+QUIC[TLS](A) ≤ |P|Advprf

F (B) + Advcs-1
UDP+QUIC[TLS](C) +

|P|N2

2|cid|
+

q

2n
.
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6 Conclusion

Our work is the first to provide a thorough, formal, and fine-grained security comparison of the
most efficient secure channel establishment protocols on the market today. By including packet-level
attacks in our analysis, our results shed light on how the reliability, flow control, and congestion
control of TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS] compare besides their basic security,
in adversarial settings.

We found that availability functionalities provided by transport-layer protocols like TCP can be
easily compromised without packet-level authentication, which may undermine the performance of
their supporting application-layer protocols. To protect against availability attacks, new protocols
should better implement and authenticate their own transport functionalities like QUIC does. Besides,
the key exchange packet integrity should also be scrutinized to avoid serious undetectable availability
attacks.

We hope that our model will help protocol designers in their future protocol analyses and that
our results will help practitioners better understand the advantages and limitations of novel secure
channel establishment protocols.
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Figure 6: UDP header. [46]

B Preliminary Definitions

B.1 Pseudorandom Functions

For a function family F : {0, 1}λ × {0, 1}n → {0, 1}m, consider the following security experiment

associated with an adversary A. In the beginning, sample a bit b
$← {0, 1}. If b = 0, A is given oracle

access, i.e., can make queries, to Fk(·) = F (k, ·) where k
$← {0, 1}λ. If b = 1, A is given oracle access

to f(·) that maps elements from {0, 1}n to {0, 1}m uniformly at random. In the end, A outputs a bit

b′ as a guess of b. The advantage of A is defined as Advprf
F (A) = |Pr[b′ = 1|b = 0]−Pr[b′ = 1|b = 1]|,

which measures A’s ability to distinguish Fk (with random k) from a random function f .
F is a pseudorandom function (PRF) if the following holds:

• For any k ∈ {0, 1}λ and x ∈ {0, 1}n, there exists a polynomial-time (in λ) algorithm to compute
F (k, x);

• For any PPT adversary A, Advprf
F (A) is negligible in λ.

B.2 Stateful Authenticated Encryption with Associated Data

We follow [32, 9] in extending the stateful authenticated encyption notion of Bellare et al. [5] to
capture a hierarchy of stateful AEAD security notions based on different authentication levels. The
following definitions are the same as [9], except that we exclude the length-hiding property proposed
by Paterson et al. [44] for conciseness.

Syntax. A stateful AEAD scheme sAEAD is a three-tuple (sG, sE, sD) associated with a key space
K = {0, 1}λ, a message space M⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a state space
ST ⊆ {0, 1}∗. sG is a probabilistic algorithm that samples a random key from K and initializes the
encryption and decryption states ste, std ∈ ST . sE is a probabilistic encryption algorithm that takes
as input k ∈ K, ad ∈ AD,m ∈ M and ste and outputs a ciphertext ct ∈ {0, 1}∗ with an updated
ste. sD is a deterministic decryption algorithm that takes as input k ∈ K, ad ∈ AD, ct ∈ {0, 1}∗
and std and outputs m ∈ M∪ {⊥} with an updated std. The correctness requires that, for any k ∈
K, ste = st0e, std = st0d sampled or initialized by sG and any sequence of encryptions {(cti+1, st

i+1
e )

$←
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sE(k, adi,mi, st
i
e)}i≥0, the sequence of decryptions {(m′i+1, st

i+1
d ) ← sD(k, ad,E(k, adi, cti, st

i
d))}i≥0

satisfies mi = m′i, i ≥ 0.

Security. Consider the following experiment with an authentication level al ∈ [4]. In the beginning,

run sG to generate a key k and initialize ste, std. Sample b
$← {0, 1} and set (u, v, outofsync) ←

(0, 0, 0). Then, the adversary A is given access to the following oracles:
Enc(ad,m0,m1):

1: u← u+ 1, (sent.ctu, st
′
e)

$← sE(k, ad,mb, ste)
2: (sent.adu, ste)← (ad, st′e), return sent.ctu

Dec(ad, ct):

1: if b = 0, return ⊥
2: v ← v + 1, (m, st′d)← sD(k, ad, ct, std)
3: (rcvd.adv, std)← (ad, st′d)
4: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m 6= ⊥) ∧ condal,

14

set outofsync← 1
5: if outofsync = 1, return m, otherwise, return ⊥

In the end, A outputs a bit b′. The stateful AEAD scheme sAEAD is secure with authentication
level al if and only if Advaead-al

sAEAD (A) = |2 Pr[b = b′]− 1| is negligible in λ for any PPT adversary A.

C QUIC and TLS 1.3’s Stateful AEAD Schemes and Their
Security

C.1 QUIC’s Stateful AEAD Scheme and its Security

First, we show QUIC’s stateful encryption scheme sAEADQUIC constructed from a nonce-based AEAD
scheme AEAD = (G,E,D) as follows.

sG():

ke
$← G(), km

$← {0, 1}32

(ste, std)← (∅,⊥)
return (ke, km)

sD(k, ad, ct, std):

(ke, km)← k
(cid, sqn)← ad
m← D(ke, km‖sqn, ad, ct)
return (m,⊥)

sE(k, ad,m, ste):

(ke, km)← k
(cid, sqn)← ad
if sqn ∈ ste,

return (⊥, ste)
c← E(ke, km‖sqn, ad,m)
ste ← ste ∪ {sqn}
return (c, ste)

Note that sAEADQUIC uses the encryption state to keep track of used nonces to avoid repeating
and the decryption state is unused.

To reduce sAEADQUIC’s level-1 AEAD security to the underlying AEAD’s nonce-based AEAD
security, we first recall that the nonce-based AEAD security is defined as two separate parts, privacy
and authenticity. For privacy, the adversary guesses the secret bit of a left-or-right encryption oracle
but cannot make queries with a repeated nonce. The associated advantage is denoted by Advind-cpa

AEAD (A).
For authenticity, the adversary tries to forge a valid ciphertext (together with a nonce and an associated
data), given an encryption oracle (without the secret bit). The associated advantage is denoted by
Advint-ctxt

AEAD (A). Now, we are ready to prove the following theorem.

Theorem 3 For any PPT adversary A, there exist PPT adversaries B and C such that:

Advaead-1
sAEADQUIC

(A) ≤ Advint-ctxt
AEAD (B) + Advind-cpa

AEAD (C) .
14Authentication conditions condal are defined in the same way as in the msACCE-std Decrypt query.
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Proof: Consider two games G0 and G1. G0 is the real experiment for A and G1 is the same as
G0 except that it will always return ⊥ for Dec queries. Denote Pri as the advantage of A in Gi.
|Pr0−Pr1 | is bounded by the probability that A forges a new valid ciphertext given b = 1, which
by definition is bounded by Advint-ctxt

AEAD (B) for some PPT adversary B. Then, note that according
to the sAEADQUIC construction nonces in AEAD encryption queries never repeat and G1 can be
simulated by an PPT adversary C against the nonce-based AEAD privacy security, which implies
Pr1 ≤ Advind-cpa

AEAD (C). Therefore, we have Advaead-1
sAEADQUIC

(A) ≤ Advint-ctxt
AEAD (B) + Advind-cpa

AEAD (C). �

C.2 TLS 1.3’s Stateful AEAD Scheme and its Security

Next, we show TLS 1.3’s stateful encryption scheme sAEADTLS constructed from a nonce-based AEAD
scheme AEAD = (G,E,D) as follows:

sG():

ke
$← G(), km

$← {0, 1}n
(ste, std)← (0, 0)
return (ke, km)

sE(k, ad,m, ste):

(ke, km)← k
c← E(ke, km ⊕ ste, ad,m)
ste ← ste + 1
return (c, ste)

sD(k, ad, ct, std):

if std = ⊥, return (⊥,⊥)
(ke, km)← k
m← D(ke, km ⊕ std, ad, ct)
if m = ⊥,
std ← ⊥

otherwise,
std ← std + 1

return (m, std)

Note that in the above TLS’s stateful encryption scheme, nonce repeating is prevented by the
increasing counter kept by the encryption state ste. Following a very similar argument as in the above
proof of Theorem 3, one can show that the level-4 AEAD security of sAEADTLS is also reduced to
the nonce-based AEAD security of AEAD. This result has been proved by previous work (Theorem
3 in [17]), but their stateful AEAD security definition is slightly different from ours. For instance,
in their game the adversary needs to distinguish ciphertexts from random, while in our game the
adversary distinguishes ciphertexts of two messages.

D TFO+TLS 1.3’s msACCE-std Security

Due to the high similarity among the abundant TLS 1.3 proofs in the MSKE model (and its extensions)
and a security proof in our msACCE-std model, we show a proof sketch below.

Previous works [20] and [22] respectively proved that the TLS 1.3 draft-16 (EC)DHE full handshake
and draft-14 PSK-(EC)DHE 0-RTT resumption handshake are secure in the MSKE model based on
the collision resistance of the hash function, unforgeability of the signature and MAC schemes, PRF
security of the key derivation function, and pseudorandom function oracle Diffie-Hellman (PRF-ODH)
assumption [28, 34, 11]. Their MSKE security, which captures only the key exchange phases, ensures
the Bellare-Rogaway-style key secrecy [6] (i.e., the stage keys are indistinguishable from random ones)
with various authentication properties (for which our msACCE-std model focuses on the unilateral
server authentication). These results derived the overall TLS 1.3 security using a compositional
approach, i.e., composing a secure key exchange protocol (e.g., the TLS 1.3 handshake protocol) in
the MSKE model with an arbitrary secure symmetric key protocol (e.g., the TLS 1.3 record protocol).
However, as stated in [22], this generic composition result only works for key-independent, forward-
secret, external, and non-replayable stage keys. In particular, it does not apply to the final session keys
in full handshakes or the interim handshake keys because they are used internally in the key exchange
phases. Besides, it does not apply to the 0-RTT keys, which are replayable and non-forward-secret.
In order to adjust their security results to prove TLS 1.3’s Server Authentication and level-4 Channel
Security in our model, we need to address a few TLS 1.3 updates and model differences as follows.
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First, we show that the security results in [20, 22] for old TLS 1.3 drafts can be extended to the
standard TLS 1.3 [51], i.e., the standard TLS 1.3 (EC)DHE full handshake and PSK-(EC)DHE 0-RTT
handshake are secure in the MSKE model.

1) The multi-stage key generation procedures are updated in the just-released TLS 1.3. Recall that
TLS 1.3 performs key derivation in the extract-then-expand paradigm [33] using the HMAC-based
Extract-and-Expand Key Derivation Function (HKDF), which consists of two functions HKDF.Extract
and HKDF.Expand. In particular, it first extracts an internal secret (e.g., early secret, handshake
secret, and master secret), then expands it (twice) to derive the corresponding stage key. The latest
standard TLS 1.3 performs an expand-then-extract procedure instead of a single extract procedure for
the extraction of the handshake secret and master secret. However, these two additional expand steps
do not affect the MSKE security because they only add a constant (single) query to HKDF.Expand,
leading to a larger constant for its PRF advantage. Besides, compared to [20], such extra expand
steps help TLS 1.3’s MSKE security no longer rely on the PRF security of the underlying HMAC
primitive of both HKDF functions.

2) The message flows of the PSK-(EC)DHE 0-RTT resumption handshake are updated in the
just-released TLS 1.3. The 0-RTT Finished message is replaced by a pre-shared key (PSK) binder.
They are both HMAC values generated with very similar procedures and have the same purpose,
i.e., to authenticate the ClientHello message and to bind the current resumption session with the
assoicated full session. Such a replacement does not affect the TLS 1.3’s MSKE security. Besides, a
new EndOfEarlyData message is added as an indicator to end 0-RTT data transmission. This is an
empty handshake message independent of key generation so does not affect the security either.

Then, based on the above extended TLS 1.3 MSKE security, we can apply the security results
in [39] to get the Multi-Level&Stage security of the combination of the TLS 1.3 full handshake and
0-RTT resumption handshake. Referring to their notions [39], our msACCE-std model focuses only on
two modes, i.e., the (EC)DHE full handshake and PSK-(EC)DHE 0-RTT resumption handshake, and
two levels, i.e., one level of full handshakes followed by one level of 0-RTT resumption handshakes.

Finally, we show that the above TLS 1.3 security result in the Multi-Level&Stage model [39] can
be augmented to prove TLS 1.3’s Server Authentication and level-4 Channel Security.

1) The above security result guarantees server authentication, i.e., a client oracle that has set its
final session key must share the same session identifier with a unique peer server oracle. However, their
session identifier is defined as unencrypted key exchange messages in order to capture key independence
(i.e., revealing independent stage keys in the same session does not break the unrevealed stage key’s
secrecy). We instead use a “real” encrypted session identifier to simplify our model and make reducing
KE Payload Integrity to Server Authentication easy. (Note that an unencrypted session identifier
may correspond to many valid encrypted session identifiers but KE Payload Integrity requires no
modification in the encrypted payload). To prove Server Authentication, we need to follow their proof
of the TLS 1.3 Multi-Level&Stage server authentication to replace handshake keys with independent
and random values, then use sAEADTLS’s AEAD oracles to simulate encrypted key exchange messages
in sidTLS and the decryption of them. In this way, Server Authentication can be reduced to the TLS
1.3 Multi-Level&Stage server authentication and the AEAD security.

2) To prove level-4 Channel Security, we follow their proof of the TLS 1.3 Multi-Level&Stage
security to replace all stage keys with independent and random values and then use the AEAD
oracles to simulate encrypted key exchange messages and Encrypt,Decrypt queries. In this way, level-4
Channel Security can be reduced to the TLS 1.3 Multi-Level&Stage security and the level-4 AEAD
security of sAEADTLS. Note that the AEAD oracles are also used to simulate post-handshake messages
like NewSessionTicket. This bypasses the composition issue [19] faced by the MSKE model (and
its extensions), in which the application keys in full handshakes cannot be composed with secure
symmetric key protocols because these keys are used internally in the key exchange phase to encrypt
NewSessionTicket messages.
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E Proof of Theorem 1

Client C Server S(kck)
1.sqn

C

2.ackS, sqnS
, ck

3.ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1

sqnS
$← {0, 1}32

ck← ck gen(kck, IPC)
ackS ← sqnC + 1

Figure 7: TFO initial connection.

Client C(ck) Server S(kck)
1.sqnC , ck,m∗C

2.ackS, sqnS
,m
∗
S

3.ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1
+|m∗S |

sqnS
$← {0, 1}32

ck′ ← ck gen(kck, IPC)
If ck = ck′:
ackS ← sqnC + 1

+|m∗C |
Otherwise:
ackS ← sqnC + 1
(fall back to TCP)

Figure 8: TFO 0-RTT resumption connection. * indicates optional messages.

The TFO protocol specifications are shown in Fig. 7 and Fig. 8, where the server samples kck
$←

{0, 1}λ in the beginning and then generates cookies with ck gen:

ck gen(kck, IPC):
return Fkck(IPC‖IPS‖0 · · · 0)

Proof: Consider a sequence of games G0, . . . , G|S|. G0 is the real experiment for A and G|S| uses
random functions instead of the PRF F for all servers. The hybrid game Gi uses random functions for
the first i servers and PRF for the last |S| − i servers. Denote Pri as the winning probability of A in
Gi. By the PRF definition, for any i ∈ [|S|] there exists a PPT adversary Bi such that |Pri−1−Pri | ≤
Advprf

F (Bi). Therefore, there exists a PPT adversary B such that |Pr0−Pr|S| | ≤ |S|Advprf
F (B).

Now we only need to bound Pr|S| by considering two cases. 1) A wins by sending a valid ACK
packet. In this case, A must have generated a valid ackC by correctly guessing the target server’s
TCP sequence number sqnS . The winning probability of each guess is exactly 1/2|sqn|. 2) A wins by
sending a valid SYN packet in resumption sessions. In this case, A must have forged a valid TFO
cookie ck. The winning probability of each forgery is exactly 1/2n because the TFO cookie generation
functions are independent and truly random. By applying a union bound on the q queries, we have
Pr|S| ≤ q/min{2|sqn|, 2n}. �

F TCP Attacks

TCP Flow Control Manipulation. An adversary with access to the communication channel can impact
TCP’s flow control mechanism to decrease the sending rate or stall the connection by modifying
TCP’s window header field. This field controls the amount of received data the sender of this packet
is prepared to buffer. By reducing this quantity, the throughput of the connection can be reduced
and if it is set to zero the connection will completely stall.
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One example of this attack would be to modify the window field to zero in a TCP packet containing
a TLS-encrypted HTTP request. Since TCP headers are not authenticated, this modification will not
be detected. As a result, when the server receives this request and attempts to send the response,
it will believe that the client cannot currently accept any data and will delay sending the response.
After some timeout, TCP will probe the client with a single packet of data to determine whether the
window is still zero. If the adversary also modifies the responses to these probes, the connection will
remain stalled indefinitely; otherwise, the connection will eventually recover after a lengthy delay.
TCP Acknowledgment Injection. An adversary who can observe a target connection and forge packets
can inject new acknowledgment packets into the TCP connection. Acknowledgment packets have
no data making them undetectable by either TLS or the application. However, they are used by
congestion control to determine the allowed sending rate of a connection.

Injecting duplicate or very slowly increasing acknowledgments can be used to slow a target con-
nection down drastically. [30] demonstrated a 12x reduction in throughput using this approach with
the attacker required to expend only 40Kbps. This, of course, represents a significant performance
degradation for a TFO+TLS 1.3 connection.

Injecting acknowledgments can also be used to dramatically increase the sending rate of a con-
nection, turning it into a firehose that an attacker can point at their desired target. This is done
by sending acknowledgments for data that has not been received yet, an attack known as Optimistic
Ack [54]. This attack renders TCP insensitive to congestion and can completely starve competing
flows. It could be used with great effect to cause denial of service against a server or the Internet
infrastructure as a whole [55].

G UDP+QUIC’s msACCE-std Security

It has been proven in [41] that QUIC is QACCE-secure in the random oracle model based on the
unforgeability of the signature scheme, the computational Diffie-Hellman (DH) assumption [3], and
the nonce-based AEAD security. Note that msACCE-std with sAEADQUIC is semantically equivalent
to QACCE with nonce-based AEAD and get iv (defined in [41]), so their QACCE security results can
be trivially adapted to show that UDP+QUIC achieves Server Authentication and level-1 Channel
Security in our msACCE-std model. Note that msACCE-std security relies on the level-1 AEAD
security of sAEADQUIC instead of the nonce-based AEAD security of the underlying AEAD, but the
former can be reduced to the latter as shown in Appendix C.

H Proof of Theorem 2

Proof: Consider a sequence of games G0, G1, G2, G3 and let Pri denote the winning probability of
A in game Gi.

G0 is the real experiment for A, so Pr0 = Advrst-auth
UDP+QUIC[TLS](A).

G1 is the same as G0 except that the connection IDs never repeat for each party. Since the
probability of cid collision for each party is at most N2/2|cid|, we have |Pr0−Pr1 | ≤ |P|N2/2|cid|.

G2 is the same as G1 except that G2 uses independent random functions f instead of the PRF F
for reset token generation. Similar to the hybrid argument in the proof of Theorem 1, there exists a
PPT adversary B such that |Pr1−Pr2 | ≤ |P|Advprf

F (B).
Now consider a Channel Security adversary C that simulates G2 for A. C can simulate Pack

and Deliver queries with Encrypt and Decrypt queries. For a Pack(·, ·, prst) query, C generates two

random reset tokens x, y
$← {0, 1}n and uses them to construct two pre-reset messages. Then, C

queries Encrypt with these pre-reset messages as challenge messages, uses the output ciphertext to
form a pre-reset packet, and sends it to A. This simulates G2 perfectly except when a forged reset
packet happens to match the wrong reset token (generated from x or y) in which case C does not
know whether or not to accept the reset packet.
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G3 is the same as G2 except that a reset packet generated by A never matches the wrong reset
token. Since there are at most q reset packets forged by A, we have |Pr2−Pr3 | ≤ q/2n.

Now a Channel Security adversary C can perfectly simulates G3. When A outputs (P, i, d), C
returns a random bit if πiP rejected the forged reset packet (i.e., it does not match either of the reset
tokens x or y generated by C for πiP ’s peer); returns 0 if it matches x; returns 1 if it matches y. Then,
because mismatch does not happen, C’s winning probability is at least Pr3 +(1 − Pr3)/2, i.e., C’s
advantage is at least Pr3. Therefore, Pr3 ≤ Advcs-1

UDP+QUIC[TLS](C).
Our proof is concluded with a union bound on Pris. �
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