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ABSTRACT

Moving-Target Defenses seek to introduce dynamism, ran-
domness, and diversity into computer systems in an effort
to make these systems harder to explore, predict, and ex-
ploit. Over the past decade a variety of work has explored
applying these kinds of defenses to applications’ runtime
environments ,to the operating systems and architectures
running the applications, and to networks.

In this paper, we report on lessons learned from seven years
of building and evaluating moving-target defenses, primarily
for process memory layouts and networks. We identify six
major lessons learned from our experience that we believe
to be broadly applicable to moving-target defenses, focusing
around the importance and impact of threat models and
characteristics of effective moving-target defenses. We then
offer suggestions for the future direction of the field based
on our experience.
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1 INTRODUCTION

That computer systems are frequently insecure and attacked
by all manner of adversaries should come as no surprise to
anyone. Common attacks today may exploit a variety of issues
in the computation stack, from buffer overflows or use-after-
frees in individual applications, to unpatched vulnerabilities
in operating systems and drivers, or ineffective network seg-
mentation. moving-target defenses seek to raise the bar for
the attacker by introducing dynamism, or movement, into an
otherwise static computer system. For example, instead of
using identical memory layouts every time a binary executes,
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a moving-target defense may randomize the memory layout
every time it is loaded or even at runtime. As this memory
layout is critical to writing an exploit for a buffer overflow
or use-after-free bug, this greatly increases the difficulty of
attacking the system.

This core moving-target idea of defending systems by in-
troducing dynamism, randomness, or diversity to make ex-
ploiting a system harder is broadly applicable across domains
and not constrained to defending against one particular class
of exploits or vulnerabilities. As a result, a wide variety
of defenses relying on moving-target techniques have been
developed over the last decade or more, including defenses
applying randomization to process memory layout to protect
against memory safety exploits [4, 11, 12, 20, 34], defenses
applying dynamism to network addresses to protect against
network mapping or denial-of-service [5, 13, 14, 36], defenses
applying dynamism to packet headers to protect against traf-
fic analysis [25, 31], and defenses applying diversity to the
operating systems running some service to protect against
vulnerabilities in particular operating systems [1, 18], as well
as others [8, 30, 35].

While moving-target defenses have been successfully ap-
plied in a wide variety of use cases, there remain several
challenges. One of the biggest is that moving-target defenses
provide probabilistic protection. In other words, attackers
are not prevented outright from exploiting the system; the
dynamism or randomization introduced merely makes ex-
ploitation extremely unlikely. As a result, moving-target de-
fenses may be rendered ineffective by attacks that can follow
the dynamism at runtime [7], by information leakage attacks
that can be used to determine the current configuration for
exploitation [22, 33], or by attacks that use other informa-
tion that is not perturbed by a given defense. As a result,
moving-target defense is still an active area of research.

We have been building and evaluating moving-target de-
fenses for more than seven years. Over the course of that
time, we have built moving-target defenses for network packet
headers [25] and network connectivity [8], as well as evalu-
ated a variety of other moving-target defenses in these areas
and developed attacks that circumvent them [1, 21, 26, 33].
Finally, we have taxonomized and examined a large portion
of the existing work in this area [32].

In this paper, we reflect on our experiences over the last
seven years and offer six lessons learned that we hope will
be valuable for the community. These lessons center around
a need to carefully consider the threat model and attacker
capabilities when designing or deploying moving-target de-
fenses, as well as identifying what information movement
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is most effectively applied to when creating moving-target
defenses. We then offer insights as to key directions for the
future of the field.

2 BACKGROUND

Moving-target techniques seek to disrupt or prevent the suc-
cessful execution of a cyber-attack by adding dynamism,
randomness, or diversity to an otherwise static system com-
ponent. While they may be taxonomized in several ways,
we find the categorization presented in [32] to be helpful
for the purpose of this paper. Under their system, a defense
falls into one of several categories based on the layer of the
computation stack where dynamism is added:

∙ Dynamic data techniques change the representation
of application data. This does not generally include
encryption of data at rest or in transit, though cryp-
tographic primitives may be used as part of a larger
defensive technique.

∙ Dynamic software changes the application’s code in
memory, while preserving its higher-level execution
semantics. For example, a multi-compiler may emit
different binaries with equivalent functionalities.

∙ Dynamic runtime environments permute or add dy-
namism to the environment an application executes in,
such as memory layout randomization.

∙ Dynamic platforms add dynamism to the underlying
operating system while preserving (or adapting) its
system call interface. Many virtualization-based ap-
proaches fall into this category, for example.

∙ Dynamic networks add dynamism to network structure
(e.g., topology), addressing, or protocols. Examples
include software-defined networking approaches that
modify network topology over time, or permute network
packet headers.

This paper will not focus on rigorously taxonomizing all
referenced techniques. Nor will it argue that specific cate-
gories are more or less effective against certain threat models.
However, many of the lessons discussed here are especially
applicable to, or represent challenges naturally arising in the
context of, particular categories of moving-target defense.

3 LESSONS LEARNED

Lesson 1: Attackers can use APIs too

One danger when considering attacker threat models, es-
pecially in enterprise environments, is assuming that the
attacker does not have full access to the same system and
network services that benign applications do (or not con-
sidering the full scope of those services). In particular, it is
common for modern attack campaigns on enterprise networks
to take advantage of system features such as Windows Pow-
ershell, LDAP services, DHCP, and Server Message Block
(SMB) shares. All of these services are used by benign appli-
cations, yet each affords the attacker powerful reconnaissance
and lateral movement tools.

As an example case study, consider the 2017 NotPetya
attacks [27]. The malware was originally introduced via a
software supply-chain attack that compromised a software
update server. When a victim downloaded an update, they
also became infected with the malware. From that original
entry point, NotPetya queryed Active Directory domain con-
trollers and DHCP servers for subnet configuration data in
order to begin mapping the network. It conducted credential
theft and remote process execution through valid Windows
system administration tools. While it was able to spread via
exploitation of SMB shares, credential theft was the primary
vector for lateral movement [24]. With the exception of these
potentially-unnecessary SMB exploits, the remainder of Not-
Petya’s attack chain used existing APIs for the purposes they
were intended for, albeit to malicious ends.

This case study is not unique. Similar techniques were used
in the 2017 Equifax breach [16] and 2015 Anthem breach [17].
Enterprise environments require rich service APIs in order to
support remote management, access control, system provi-
sioning and maintenance, and consistency across distributed
services. If an attacker can obtain sufficient privileges to uti-
lize these APIs, there is little to distinguish an attacker from
a legitimate system adminstrator or service. Disabling these
APIs is also not a realistic option, as it would also impede
system administrators trying to stop the spread of malware.
Indeed, in the case of NotPetya, Microsoft advised that “if a
threat actor has acquired the credentials needed for lateral
traversal, you can NOT block the attack by disabling exe-
cution methods like PowerShell or WMI. This is not a good
choke point because legitimate remote management requires
at least one process execution method to be enabled [24].”

The lesson here is that moving-target defenses rely on
the attacker needing capabilities unavailable through nor-
mal APIs. When malware can largely limit its activities to
legitimate APIs and services, it is not clear what targets
to move in order to disrupt the attack, that will not also
disrupt legitimate applications. IP address randomization,
for example, would be ineffective here, since the malware can
simply query the relevant servers for configuration data also
used by legitimate applications. Memory randomization to
stop exploitation via memory corruption may mitigate the
SMB exploits, but will do nothing to stop remote process
execution via stolen credentials.

That said, we think this represents an opportunity for the
moving-target community to reconsider how their defenses are
designed, and the threat models that drive them. Attackers
must still operate outside the bounds of a legitimate user
(e.g., by stealing credentials), and it is at these points that
moving-target defenses will be most capable at halting an
attack with minimal impact on benign operators.

Lesson 2: moving-target defenses are most
effective when hiding information only the
attacker needs

moving-target defenses fundamentally try to hide some infor-
mation from the attacker. We have observed that the choice
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of that information is crucially important to the effectiveness
and overhead of a defense. In particular, we have found that
the moving-target defenses that are most effective and least
costly focus on hiding information that is valuable to an
attacker but of little to no value to legitimate users.

Coarse memory randomization defenses, like ASLR [28]
and DieHard [2], that randomize the location of the text and
data sections of a process at load time are great examples of
this. It turns out that there are almost no legitimate reasons
for one process to care about the memory layout of another
process. Debuggers, like gdb, are perhaps the one exception,
but are rarely used on production machines and typically
require the debugged program to be started with special flags
or environments anyway. As a result, memory randomization
defenses can freely randomize process address spaces without
having to develop complex mechanisms to keep the rest of
the system in sync (such mechanisms can also be used by
an attacker, see Lesson 1). This reduces the overhead of
the defense, as little metadata needs to be maintained, and
improves the effectiveness, as the defense offers no way to
identify randomized elements.

IP address randomization schemes, like RPAH [14], where
the IP addresses used to communicate with legitimate devices
on the network are automatically changed on a frequent basis,
are examples of the opposite situation. Here, basically any
device that communicates over the network needs to know the
IP address of the hosts it communicates with. This includes
essentially every legitimate device on a network: workstations,
IP phones, printers, cameras, and a host of others. It also
includes every router, which needs to make decisions and
optimizations based on those addresses. As a result, these
schemes require some mechanism to coordinate state across
the whole system in a consistent manner and make it query-
able by legitimate devices. This is frequently done using
SDN and DNS, for IP hopping schemes [23, 36]. Generally,
however, this type of coordination tends to be expensive
and centralized and introduces a whole host of consistency
challenges (see Lesson 6). Additionally, this query API is
a possible channel for the attacker to learn and circumvent
the randomization (see Lesson 1). As a result, these schemes
tend to be expensive and offer easy paths for attackers to
circumvent.

Another important realization is that this space is a spec-
trum. We have so far talked about defenses where the infor-
mation being hidden is either of no value or extreme value to
the rest of the system. Most defenses fall somewhere in the
middle. Consider defenses that rerandomize a binary dynam-
ically at runtime, like TASR [4]. While other processes do
not care about the memory layout of the process, the process
itself does. In particular, any given process is likely to have
many code and data pointers in use and those would need
to be updated if the location of code or data changes. This
gets much worse if doing fine-grained randomization, where
memory within the code and data segments is reordered, such
that jumps within the code segment need to be changed. For
defenses like these, metadata definitely needs to be main-
tained to allow the defense to quickly and accurately update

the process image. Updating this metadata and the process
image will definitely result in overhead. However, this meta-
data is specific to a single process, meaning that it does not
introduce consistency challenges across many system compo-
nents. Further, because the rerandomizing component is the
only thing that needs this metadata and the new memory
locations, no API is required for sharing this information.

Overall, we recommend those designing or deploying moving-
target defenses to consider what information is being pro-
tected by a defense and focus on information that is of great
value to an attacker while being of little use to legitimate
elements of the system. We have observed that such systems
usually have better effectiveness and reduced overhead.

Lesson 3: Threat model and system type
matter

Threat models drive the development of defenses. A good
threat model realistically considers what capabilities attack-
ers have and what constitutes attacker success. The efficacy
of a defense should be able to be quantitatively or analytically
evaluated with respect to this threat model. Unfortunately, it
is difficult to quantitatively demonstrate how much a defense
makes it ‘harder’ to attack a system. The security community
lacks standard metrics of success, and despite recent work on
developing a science of security [10] this situation is unlikely
to change in the near future. F Lacking standard metrics,
some early moving-target defenses nonetheless provided a
quantitative evaluation by claiming that some measurable
quantity is linked to the attacker’s difficulty, cost, or proba-
bility of success. This is dangerous if it implicitly weakens
the attacker by restricting their capabilities, and can lead to
a false sense of security. For example, early memory random-
ization schemes [3, 6] assumed that once memory layout was
permuted, attackers would be limited to guessing the offsets
of useful code. Thus, metrics based on probability and entropy
were used to evaluate defenses. Not long after, the advent
of memory-disclosure attacks demonstrated the limitations
of such metrics, as attackers were no longer forced to guess
memory offsets. The metrics implicitly limited attackers into
a proscribed set of actions that were not reflective of their
actual capabilities.

Similarly, some leakage-resilient memory randomization de-
fenses evaluated the number of code reuse gadgets that were
removed [11, 20, 34] or the granularity of randomization [12],
as a ad-hoc security metric. The problem is that this is again
making an implicit assumption about what an attacker can or
cannot do. Using fine-grained randomization to make 99% of
gadgets unavailable, for example, does not necessarily make
an attack 99% harder or reduce the attacker’s probability
of success to 1%. It restricts the number of building blocks
available to an attacker, but there is no guarantee that the
removed gadgets were critical to attack success. Page-level
randomization, for example, removes almost all gadgets avail-
able to the attacker by randomizing their location in memory.
Yet, RelROP [33] attacks demonstrate that there can be
enough gadgets in a single page of memory to launch a shell.
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A related problem arises when moving-target defenses
make implicit assumptions about what constitutes attacker
success. Many moving-target defenses (e.g., memory random-
ization) inherently convert an attack on system integrity
(e.g., memory corruption) into an attack on availability, by
causing undefined behavior, trapping, or crashing a program
in response to an attack. This is implicitly considered to
be a better scenario for the defender when evaluating the
technique. There are two issues with this approach.

First, it presupposes that the attacker’s goal is not denial-
of-service. Depending on the cost to restart a process and the
overhead imposed by the defense, a moving-target defense
could transform a normally non-crashing bug into valuable
channel for denial-of-service attacks. Second, it assumes that
an attack on availability is less harmful than an attack on
integrity or confidentiality. This may be true in conventional
computing (e.g., web servers), but in some environments
unexpectedly crashing the process is entirely unacceptable.
Cyber-physical systems, for example, use a software controller
to sense and actuate physical processes. These include auto-
motive braking controllers, flight control software, industrial
plant controllers, and electrical grid management systems.
In these, a software crash can result in physical damage or
harm to human beings. If a moving-target defense increases
the probability of an unexpected crash in the event of an
attack, it may not improve the overall security of the system.

Overall, we recommend against attempting to informally
quantify how a defense impacts an attacker’s cost, difficulty,
or probability of success. Many metrics make implicit as-
sumptions about what attackers can or cannot do, and these
may not hold up in reality. In particular, it is dangerous
to claim that a moving-target defense makes a particular
kind of attack ‘too hard’ for an adversary. Additionally, it is
important to be clear about the impact of a defense not only
on system integrity or confidentiality, but also on availability.

Lesson 4: Used improperly, moving-target
defenses can help attackers

moving-target defenses add dynamism to a previously static
system component. When done well, this effectively hides
information needed for an attacker to succeed. However, if the
impact of additional dynamism is not carefully considered, it
may hinder legitimate users or even play to the advantage
of the attacker. In particular, we have observed two kinds
of detrimental effects that can arise from improper use of
moving-target defenses.

First, care must be taken when using moving-target ap-
proaches that ’rotate’ through one of several system con-
figurations. TALENT [18], for example, provides platform
diversity by moving a software container across several oper-
ating systems over time. The danger here is that depending
on the threat model (see Lesson 3), such a defense may ex-
pose the union of all the vulnerabilities present in the rotated
set of system components. For example, consider an applica-
tion whose host OS is rotated through Windows, Linux, and
Mac distributions. If an attacker needs to maintain constant

persistence on the system, this may effectively hinder them
by requiring a compromise of every OS instance. However,
if the attacker only needs to cause a one-time effect, then a
vulnerability against any one of the three operating systems
will suffice. The defense has effectively aided the attacker
by allowing them to leverage a wider attack surface. This
phenomenon has been explored analytically in [19].

Second, the dynamism added by moving-target defenses
may make it difficult or impossible for system administrators
to reconstruct a past system state or to collect meaningful
forensics. This is especially challenging when deploying a
network-based moving-target system that adds dynamism to
packet header fields [23, 25] or the network topology itself [8].
Network operators attempting to determine where an attack
originated, what endpoints may be compromised, or how
an attacker spread through the enterprise must be able to
examine the network at past points in time. This is much
easier if conventionally long-lived state, such as IP addresses
or network routes, have changed only minimally over time. If
they have been rapidly permuted by a moving-target defense,
operators must trace those permutations backward in time
in order to reconstruct the network state. Depending on
the size of the network, the frequency of permutation (see
Lesson 5), and the amount of time in question, a very large
volume of meta-data may need to be maintained in order to
support diagnostics that would otherwise be straightforward
and low-cost.

Overall, we recommend that researchers working on moving-
target defenses weigh the effects of the defense against what
the attacker may be trying to achieve (see Lesson 3) and the
impact of dynamism on system auditing and maintenance.
Dynamism can aid, or hide, malicious activities when improp-
erly used. If a defense adds software to a system, researchers
should address how this changes attack surface. If a defense
permutes information that is routinely logged, researchers
should strive to provide a low-cost mechanism for tracing
permutations backward in time.

Lesson 5: Timescale of movement must
match threat model

Another important lesson we have learned is that it is essen-
tial for the time scale of the dynamism in a moving-target
defense to match the threat model in order for that defense
to be effective. Because moving-target defenses operate by
hiding information from attackers, their nemeses are infor-
mation leakage attacks. These attacks expose the current
configuration of the information being hidden and, if acted
on prior to an application of dynamism, allow an attacker to
bypass the moving-target defense. Unfortunately, information
leakage attacks are common and increasingly used by attack-
ers [9, 29]. Effective moving-target defenses will take this
into consideration in their threat models and use timescales
of movement that minimize this risk of information leakage
being weaponized.

Of course, the timescale of movement is a trade off between
performance and security. Pick too fast of a timescale and
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you waste time unnecessarily changing the system. However,
if you pick too slow of a timescale, an attacker can easily
defeat the system by using information leakage attacks to
learn the current configuration of the system and then create
an attack for that configuration. This too slow case is much
harder to identify for because the performance looks good
and untuned attacks are stopped. Ultimately, a moving-target
defense’s threat model should define how quickly attackers
can weaponize an information leak and that should be the
driving factor for the timescale of movement.

An excellent example of this is TASR [4], a memory ran-
domization defense that rerandomizes a process’s address
space at runtime. The key insight of TASR, however, is less
about how the rerandomization is actually done as when it is
done. The most obvious thing to do would be to randomize
the process’s address space periodically, every 𝑛 seconds, for
instance. However, the key insight was that launching an
information leakage attack against a remote network daemon
and exploiting the results requires at least two I/O opera-
tions, one output and one input. In particular, one output
operation is required to leak the process memory layout and
one input operation is required to exploit it. TASR, therefore,
chooses to rerandomize immediately after any input operation
that follows one or more output operations, ensuring that an
adversary is unable to exploit any information leakage attack
they may launch. The careful consideration of information
leakage attacks and threat model here results in a defense
that effectively mitigates information leakage attacks with
minimal overhead.

In contrast, many defenses focus exclusively on how to
dynamically modify a system and do not really consider how
often this should be done for meaningful protection. This
significantly hurts their effectiveness because users are effec-
tively given a knob to choose between performance and some
abstract definition of security, with no real guidance about
how to set said knob. For concreteness, imagine a defense
that dynamically migrates applications between operating
systems, like TALENT [18]. In this context, an information
leakage attack looks like determining the current operating
system being used to run the application. Fingerprinting
an operating system in this manner is fairly easy, thanks
to many tools like nmap [15], and looking up vulnerabili-
ties and exploits for a given operating system version is not
very challenging either. This means that information leak-
age is definitely possible and possible to weaponize quickly.
Worse, because checkpointing and migrating applications is
expensive, it needs to be done infrequently to achieve good
performance. The needed balance between these competing
requirements is simply not obvious without reference to a
threat model.

Overall, we observe that most moving-target defenses have
concentrated on mechanism, with policy like timescale of
movement being extremely dependent on the threat model
being considered. We also observe a striking lack of research
into reasonable threat models for moving-target defenses that
would attempt to answer this question. Instead researchers

and administrators are largely left guessing about appropriate
threat models and parameters, like timescale of movement.

Lesson 6: moving-target defenses must
preserve system-wide consistency

Although moving-target defenses are based on dynamic move-
ment, our experience has shown that when it comes to system-
wide properties that other legitimate components depend on,
consistency is absolutely critical. In fact, we find that ensuring
this consistency and debugging transient inconsistent state
takes up the majority of the engineering effort in building
these kinds of defenses.

Ideally, one ensures system-wide consistency by avoiding
dynamically changing any state that must be visible across
the whole system, as discussed in Lesson 2. However, this
is not always feasible, especially for network defenses that
are fundamentally distributed in nature. For such defenses
that involve system-wide state, the entire system must be
architected so as to provide consistency and make identifying
any inconsistencies that do occur as easy as possible.

Our experience building DFI [8] provides a good example.
DFI is a network moving-target defense designed to dynami-
cally configure the network with only the connectivity needed
at any moment in time. For example, a workstation with no
users logged in will only have connectivity to the authen-
tication server, but as soon as a user logs in, connectivity
will be added to services appropriate for the user’s role in
an organization. In a traditional network, by contrast, each
device’s connectivity is static and represents the maximum
connectivity that device could ever need. DFI is built us-
ing a variety of sensors to collect authentication events and
network identifier binding information (e.g., IP-hostname or
MAC-IP mappings) and then a Software Defined Network
(SDN) to update the connectivity. All of this information is
visible across the system and needed to be kept consistent.
In particular we had 4 mappings that needed to be kept
consistent both across our defense and with the rest of the
network infrastructure: switch port to MAC address, MAC
address to IP address, IP address to hostname, and hostname
to logged in users. Additionally, the flow rules in multiple
SDN switches needed to be kept consistent with our defenses
understanding of allowed connectivity.

Although we were able to quickly prototype an initial
concept for DFI, it took well over a year of engineering effort
to work out all the consistency bugs and get the system
working reliably for sustained periods of time. Just one of
the bugs we faced was where a user would log in, but the
first packets from the user would arrive before we got the
notification that they logged in, resulting in their traffic
being blocked until they logged out and logged back in. This
actually involved two consistency issues: first, flow rules were
being kept in the switches after they were inconsistent with
the traffic DFI would currently allow and, second, network
traffic was beating the notification that they logged in to
our system. For the first, we added logic such that when
connectivity changes in the network flow rules that are now
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inconsistent with that connectivity are removed from the
switches. For the second, we experimented with a variety
of different login notification options and eventually found
one that was faster and fast enough that traffic did not
get blocked in practice. This was, of course, just a single
consistency related bug, among many, that we encountered
during development.

These issues are not unique to DFI or networks, but are a
general feature of moving-target defenses that modify system-
wide state. moving-target based systems that change the op-
erating system on which a program runs, like TALENT [18],
would be another good example. In such systems, the entire
state of the program and any operating system interactions
must be tracked such that it can be moved to a new operating
system correctly. Correctly tracking, preserving, and replicat-
ing things like open file descriptors is a major challenge and
a large engineering effort. Bugs in this will result in state
inconsistencies that will be extremely hard to track down
and fatal to the running program.

The key take away from this discussion is that the chal-
lenges in implementing a moving-target defense are often not
about what dynamism to introduce into the system or how
to introduce it, but rather how to preserve consistency so
that as dynamism occurs the rest of the system continues to
operate correctly.

4 FUTURE DIRECTIONS

Stepping back to consider the field of moving target research
as a whole and looking towards the future, we see two major
directions for future work.

First, we argue that the community needs to recognize
that what dynamism is applied to is much more important
than exactly how that dynamism is created. In particular, we
argue that future work needs to focus on identifying elements
of a system to which it would be most valuable to apply
dynamism. As discussed earlier (Lesson 2), these are usually
elements of the system that provide data that attackers need
but not legitimate components. Further, because outside
components do not need access, there is no need for APIs
that attackers can take advantage of (Lesson 1) and the
implementation and performance of the system improves
(Lesson 6).

Much moving target work has been confined to demon-
strating that dynamism can be applied to a given element or
incrementally improving the dynamism of a common element
(e.g., IP Addresses, Memory Address Space). While these are
good contributions, for our community to advance, we need
to begin to understand where moving target defenses provide
value and how to slice major security problems in such a way
that our defenses are able to maximally impede attackers
while having minimal impact on legitimate users.

While we propose that focusing on applying dynamism to
elements of the system that are crucial to the attacker, but
not to legitimate components, is a good marker, it is also
only an initial marker. There are undoubtedly other markers

for problems and places that moving target defenses will be
effective. Much research is yet needed.

Second, it is essential for research in this area to consider
well-defined and reasonable threat models. A number of our
lessons learned (1, 3, 4, and 5) highlight the importance of
having a correct threat model before designing or deploying
moving target defenses and the dangers that come from not
doing so. While it can be tempting to design a moving target
defense under the assumption that any dynamism is beneficial
and leave threat models for determining what defenses apply
where, our experience indicates that these defenses are most
effective when designed with a realistic threat model in mind.
Additionally, research is also needed on appropriate threat
models for moving target defenses. A promising starting point
may be systematic examination of threat intelligence and
case studies of real-world attacks. Novel defenses may need to
leverage deep understanding of both modern attacker tactics,
and the complex and distributed systems that are being
attacked.

5 CONCLUSION

Moving target defenses introduce dynamism into computer
systems in an effort to make these systems harder to ex-
ploit. Over the past decade a variety of work has explored
applying these kinds of defenses to runtime environments to
protect process memory layout, to the operating systems and
architectures running target applications, and to networks.

We have presented six lessons learned from our seven years
experience in the building and evaluation of moving target
defenses. These lessons center around a need to carefully
consider the threat model and attacker capabilities when
designing or deploying moving target defenses and identifying
what information dynamism is most effectively applied to
when creating moving target defenses. We also suggest that
future work on moving target defenses needs to consider
carefully exactly what element of the system dynamism is
applied to and what an appropriate and correct threat model
is for the target system.
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mation leaks without memory disclosures: Remote side channel
attacks on diversified code. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Secu-
rity. 54–65.

[23] Dilli Prasad Sharma, Dong Seong Kim, Seunghyun Yoon, Hyuk
Lim, Jin-Hee Cho, and Terrence J Moore. 2018. FRVM: Flexible
random virtual IP multiplexing in software-defined networks. In
17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE In-
ternational Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). 579–587.

[24] Mark Simos. 2018. Overview of Petya, a rapid cyberat-
tack. https://www.microsoft.com/security/blog/2018/02/05/

overview-of-petya-a-rapid-cyberattack/
[25] Richard Skowyra, Kevin Bauer, Veer Dedhia, and Hamed Okhravi.

2016. Have no phear: Networks without identifiers. In Proceedings
of the 2016 ACM Workshop on Moving Target Defense. 3–14.

[26] Richard Skowyra, Kelly Casteel, Hamed Okhravi, Nickolai Zel-
dovich, and William Streilein. 2013. Systematic analysis of de-
fenses against return-oriented programming. In International
Workshop on Recent Advances in Intrusion Detection. 82–102.

[27] Karen Sood and Sean Hurley. 2017. NotPetya Technical
Analysis - A Triple Threat: File Encryption, MFT Encryption,
Credential Theft. https://www.crowdstrike.com/blog/petrwrap-
ransomware-technical-analysis-triple-threat-file-encryption-mft-
encryption-credential-theft/

[28] The PaX Team. 2001. Address Space Layout Randomization.
https://pax.grsecurity.net/docs/aslr.txt

[29] Jacob Thompson. 2020. Six Facts About ASLR on
Windows. https://www.fireeye.com/blog/threat-
research/2020/03/six-facts-about-address-space-layout-
randomization-on-windows.html

[30] Jue Tian, Rui Tan, Xiaohong Guan, and Ting Liu. 2018. Enhanced
hidden moving target defense in smart grids. IEEE Transactions
on Smart Grid 10, 2 (2018), 2208–2223.

[31] Yulong Wang, Qingyu Chen, Junjie Yi, and Jun Guo. 2017. U-
tri: Unlinkability through random identifier for SDN network. In
Proceedings of the 2017 Workshop on Moving Target Defense.
3–15.

[32] Bryan C Ward, S Gomez, Richard Skowyra, David Bigelow, Jason
Martin, James Landry, and Hamed Okhravi. 2018. Survey of
cyber moving targets. Massachusetts Inst. Technol. Lexington
Lincoln Lab., Lexington, MA, USA, Rep 1228 (2018).

[33] Bryan C Ward, Richard Skowyra, Chad Spensky, Jason Martin,
and Hamed Okhravi. 2019. The Leakage-Resilience Dilemma.
In European Symposium on Research in Computer Security.
87–106.

[34] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and
Zhiqiang Lin. 2012. Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code. In Proceedings of the 2012
ACM conference on Computer and communications security.
157–168.

[35] Yulong Zhang, Min Li, Kun Bai, Meng Yu, and Wanyu Zang.
2012. Incentive compatible moving target defense against VM-
colocation attacks in clouds. In IFIP international information
security conference. 388–399.

[36] Zheng Zhao, Fenlin Liu, Daofu Gong, Lin Chen, Fei Xiang, and
Yan Li. 2017. An SDN-based IP hopping communication scheme
against scanning attack. In 9th International Conference on
Communication Software and Networks (ICCSN). 559–564.

https://blog.morphisec.com/aslr-what-it-is-and-what-it-isnt/
https://doi.idaho.gov/DisplayPDF?id=2034&cat=DocketIndex
https://www.microsoft.com/security/blog/2018/02/05/overview-of-petya-a-rapid-cyberattack/
https://www.microsoft.com/security/blog/2018/02/05/overview-of-petya-a-rapid-cyberattack/
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://pax.grsecurity.net/docs/aslr.txt
https://www.fireeye.com/blog/threat-research/2020/03/six-facts-about-address-space-layout-randomization-on-windows.html
https://www.fireeye.com/blog/threat-research/2020/03/six-facts-about-address-space-layout-randomization-on-windows.html
https://www.fireeye.com/blog/threat-research/2020/03/six-facts-about-address-space-layout-randomization-on-windows.html

	Abstract
	1 Introduction
	2 Background
	3 Lessons Learned
	4 Future Directions
	5 Conclusion
	References

