
Automated Discovery of Cross-Plane Event-Based
Vulnerabilities in Software-Defined Networking

Benjamin E. Ujcich∗, Samuel Jero†, Richard Skowyra†, Steven R. Gomez†,
Adam Bates∗, William H. Sanders∗, and Hamed Okhravi†
∗University of Illinois at Urbana-Champaign, Urbana, IL, USA

†MIT Lincoln Laboratory, Lexington, MA, USA

Abstract—Software-defined networking (SDN) achieves a pro-
grammable control plane through the use of logically centralized,
event-driven controllers and through network applications (apps)
that extend the controllers’ functionality. As control plane deci-
sions are often based on the data plane, it is possible for carefully
crafted malicious data plane inputs to direct the control plane
towards unwanted states that bypass network security restrictions
(i.e., cross-plane attacks). Unfortunately, because of the complex
interplay among controllers, apps, and data plane inputs, at
present it is difficult to systematically identify and analyze these
cross-plane vulnerabilities.

We present EVENTSCOPE, a vulnerability detection tool that
automatically analyzes SDN control plane event usage, discovers
candidate vulnerabilities based on missing event-handling rou-
tines, and validates vulnerabilities based on data plane effects.
To accurately detect missing event handlers without ground truth
or developer aid, we cluster apps according to similar event usage
and mark inconsistencies as candidates. We create an event flow
graph to observe a global view of events and control flows within
the control plane and use it to validate vulnerabilities that affect
the data plane. We applied EVENTSCOPE to the ONOS SDN
controller and uncovered 14 new vulnerabilities.

I. INTRODUCTION

Software-defined networking (SDN) has experienced a
rapid rise in adoption within data center providers, telecom-
munication providers, and other enterprises because of its
programmable and extensible control plane [30]. SDN claims
to decouple the network’s decision-making about forwarding
(i.e., the control plane) from the traffic being forwarded
(i.e., the data plane) so as to allow centralized oversight
through an SDN controller and network applications (or apps)
in the enforcement of consistent (security) policies.

All popular modern SDN controllers, including ONOS [7],
OpenDaylight [51], Hewlett Packard Enterprise’s VAN SDN

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

Controller [21], and Floodlight [17], operate as reactive event-
driven architectures that, based on data plane activities, use
asynchronous event dispatchers, event listeners, and controller
API calls to pass information among controller and app com-
ponents.1 Each app’s event listeners subscribe to a subset of
the possible universe of events. Based on the event, an app
may call API services (e.g., a request to insert a new flow
rule) or generate new events (e.g., a notification that a new
host has been seen in the data plane).

SDN’s programmability significantly alters the control
plane’s attack surface. The claim of control and data plane
decoupling belies a subtle and serious challenge: control plane
decisions are often made as a result of information collected
from an untrustworthy data plane. Prior attacks [14], [22], [57]
have demonstrated specific examples of what we generalize
as the class of cross-plane attacks, which allow attackers to
influence control plane decision-making without attacking the
controller or apps directly [70]. For instance, a clever attacker
who controls a data plane host can emit packets that are acted
upon by controller and app components, which can result in
malicious privilege escalation or malicious control over flow
rule behaviors by a host.

In the context of cross-plane attacks, decisions made based
on untrusted data plane input may cause event handlers to
execute unintended code paths, or prevent the execution of
intended code paths, within the controller or apps. The event-
driven, composable, and interdependent nature of controller
and app components provides new potential for vulnerabilities
based on which apps handle (or, critically, which apps do
not handle) different kinds of events. For instance, apps
that operate as intended in isolation may create conflicting
behaviors when used together, and that may create vulnerable
conditions that are not found when apps are used in isolation.
As a result, the security posture of the SDN control plane
does not rely on properties of individual controller or app
components, but rather on the system-wide behavior of the
components’ event interactions as a whole.

The vulnerabilities that result from complex event and app
interactions are challenging to detect automatically because
such vulnerabilities are a class of logic (or semantic) bugs that
require local and global semantic understanding about events
and their use. Logic bugs are of interest to attackers because
such bugs are difficult to identify during software development

1An SDN controller service or app often consists of multiple functional
units, which we call components. A functional unit ends at an API boundary
or event dispatch.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24080
www.ndss-symposium.org

and can persist for years before disclosure [40]; existing tools
often focus on bugs related to language grammar or resource
use only (e.g., FindBugs [23], PMD [53], and Coverity [8])
or require developers to annotate code (e.g., KINT [63]),
rendering such tools difficult to use in practice [27], [58].

In the absence of developer annotations that specify in-
tended app behavior, the vulnerability search space can become
large [11], [55], [34] [27]. However, by focusing on a narrower
scope of event-related vulnerabilities that involve missing or
unhandled events, we can tractably enumerate those conditions
and investigate them. Uncovering such vulnerabilities requires
understanding of how events are used within SDN components,
how events are passed between SDN components, and how
events’ actions propagate within the control plane to have data
plane effects. Given the event-driven nature of modern SDN
architectures, our insight is that event-related bugs that result
from unhandled events are of high interest in SDN security
evaluation, particularly if cross-plane attacks can be used to
trigger such vulnerabilities that ultimately lead to data plane
consequences (e.g., flow rule installation).

Although tools have been developed to perform vulnerabil-
ity discovery in SDNs with fuzz testing [25], [34], concurrency
detection [66], and code analysis [32], [33], we are not aware
of any tools that are designed specifically to aid developers
and practitioners in the understanding of global event use
and in the identification of unhandled event vulnerabilities at
design and testing time. Forensic SDN tools [62], [59] provide
causal explanations of past executions but do not identify
vulnerabilities ahead of time.

Overview: In this paper, we propose a systematic approach
for discovering cross-plane event-based vulnerabilities in SDN.
We designed a tool, EVENTSCOPE, that aids practitioners
and developers in identifying candidate vulnerabilities and
determining whether such vulnerabilities can manifest them-
selves in the context of apps currently in use. Rather than
discover the existence of “bad” events, our goal is to identify
where the absence of a certain event handler may prevent
developer-intended code paths from executing. We investigate
how SDN controllers and apps use events to influence control
flow (i.e., the series of code paths in the control plane that are
or are not executed) as well as implicit data flow (i.e., the
propagation of untrusted data plane input that may impact
control plane decisions).

Our initial challenge is to identify what events an app
should handle. It is complicated because no ground truth exists
for this task, making simple heuristics and supervised learning
techniques difficult to apply. A naı̈ve solution would be to
require an app to handle all events, but there are instances in
which an app does not need to do so, i.e., the lack of handling
of certain events does not negatively impact the app’s expected
operation or cause deleterious data plane effects. Instead,
EVENTSCOPE analyzes how events are handled within apps’
event listeners relative to other apps to identify potentially
missing events.

EVENTSCOPE then uses static analysis to abstract the
SDN’s API functionality and event flow into what we call an
event flow graph. This data structure shows the control and data
flow beginning from data plane inputs and ending at data plane
outputs (e.g., flow rule installation and removal). That allows

EVENTSCOPE to identify the impact of a given component on
other components in the system.

Using the event flow graph, EVENTSCOPE then validates
whether potentially missing events can cause data plane effects
in the presence or absence of other apps. Given an app with
such a candidate vulnerability, EVENTSCOPE identifies other
apps that handle that app’s missing event and also have data
plane effects to create a context for that vulnerability. Next,
EVENTSCOPE represents these code executions as event flow
graph paths to determine whether they have data plane effects.
Finally, EVENTSCOPE generates a list of vulnerabilities for
analysis by developers and practitioners.

Throughout this paper, we use the open-source, Java-
based ONOS SDN controller [7] as a representative case
study. ONOS is used in production settings by telecommuni-
cations providers, and its codebase underlies proprietary SDN
controllers developed by Ciena, Samsung, and Huawei [45].
ONOS’s extensive event-centered design makes the controller
an ideal candidate for study. We analyzed how ONOS’s core
service and app components use events, discovering that many
events are not handled even when components subscribe to
those events. Although we focus on ONOS as a case study, we
note that all modern SDN controllers use a similar event-based
architecture; thus, EVENTSCOPE’s methodology is broadly
applicable to all such controllers.

We identify 14 new vulnerabilities in ONOS and, for se-
lected cases, we show, through crafted exploits, how attackers
are able to influence control plane behavior from the data
plane alone. For instance, we were able to prevent ONOS’s
access control (firewall) app from installing flow rules, which
allows hosts to communicate with each other in spite of access
control policies that should have denied their communication
(CVE-2018-12691). Additionally, we were able to leverage
ONOS’s host mobility app to remove the access control app’s
existing flow rules (CVE-2019-11189). These results demon-
strate that, in real SDN implementations, instead of apps acting
constructively and composably they often have competing and
conflicting behavior. That conflict provides subtle opportunities
for vulnerabilities to appear.

Contributions: Our main contributions are:

1) An automated approach to analyze event use by ap-
plications that identifies likely missing event handling
and checks whether this lack of event handling can
cause data-plane effects in combination with other
apps.

2) The event flow graph data structure, which allows for
succinct identification of (a) event dispatching, event
listening, and API use among SDN components, as
well as (b) the context to realize vulnerabilities.

3) An implementation of our vulnerability discovery
tool, EVENTSCOPE, in Java and Python.

4) The discovery and validation of 14 new vulnerabil-
ities in ONOS that escalate data plane access.

II. BACKGROUND

We describe here the features of the SDN architecture.
Although we use the ONOS SDN controller as a running exam-
ple, we note that other SDN controllers (e.g., Floodlight [17])

2

SDN
Controller

Controller Core

App A

…

Event Dispatchers
(Northbound API)

Core Services
(Northbound API)

CONTROL PLANE

Southbound API

Core Data Stores

DATA PLANE …

APPLICATION PLANE
(Reactive Event-Based Network Applications)

EL (event kind X) App Internal
Methods

App Internal
Data Store

OpenFlow Messages

Network
Events (in)

Data Store
Events

Data Plane
Connections

EL (event kind Y)

…

App B

EL

EL

…Network
Events (out)

Core Service
Events

EL Event
Listener

Data Plane
Host

Forwarding
Device

…

Fig. 1: SDN architecture overview. Apps subscribe to event
dispatchers and implement event listeners. Network, data store,
and service updates generate events.

share similar event-driven features. We outline the challenges
and mitigation approaches for SDN security that are related to
adversarial data plane input, event-driven apps, and event flow
interactions.

A. SDN Architecture

1) Overview: Figure 1 shows an overview of the SDN
architecture. SDN decouples how traffic decisions are made
(i.e., the control plane) from the traffic being forwarded
(i.e., the data plane). Traffic decisions are made in a logically
centralized controller that functions as the core of a network
operating system. Controllers manage network configurations
and forwarding rules in the network’s forwarding devices
through the southbound API (e.g., OpenFlow [39]).

2) Core services and app model: Controllers provide core
services (e.g., a host service that maintains data plane host
information) as a basis for extended functionality through
network applications (apps). Apps interact with the con-
troller’s core services through the northbound API and can
be installed as reactive components within the controller
or operate independently as proactive components that use
RESTful interfaces. (See Appendix A for an example of the
ONOS app’s code.) Core services and apps use event listeners
(described further in Section II-A3) to respond to events and
to actuate further functionality by calling core or internal
methods. The SDN app ecosystem allows third party and
independent developers to write apps that can be installed in
SDN controllers, and that can introduce security issues if apps
are malicious [33], [32] or if apps serve as indirect conduits
by which malicious activities can occur [59].

In addition to controlling forwarding decisions, SDN con-
trollers also expose abstractions of network objects and pro-
cesses. For instance, ONOS includes abstractions for Host
objects that represent end hosts, and for Device objects that
represent forwarding devices. Those abstractions are built on
top of information learned or programmed from lower levels.
In ONOS, the host location provider builds Host objects
based upon information learned from Packet objects’ header
information. Apps interested in changes to hosts can reason
about such changes at the level of a host abstraction rather
than a packet abstraction.

DATA PLANE CONTROL PLANE

Victim
Hosts

Attacker
Host

1

App

SDN Controller

App

Core
Service

SB API (in)

App
Core

Service

SB API (out)

…
…

2

34
5

Fig. 2: Cross-plane attack example. Black arrows denote data
plane connections, blue arrows denote control plane control
flow, and red arrows denote intended effect (e.g., increased
data plane access). 1: An attacker emits data plane packets.
2: The controller’s southbound API receives packets. 3: The
controller’s components use the data plane input to make a
data plane decision. 4: The controller emits new packets or
flow rules into the data plane. 5: The attacker uses the new
packets or flow rules as a step to actuate an attack.

3) Event model: Most SDN implementations are event-
driven systems that model data plane changes as asynchronous
events, such as the processing of an incoming data plane
packet, the discovery of new network topology links, and
changes in forwarding device states. Events have different
kinds depending on the abstraction they describe (e.g., hosts,
packets, links), and each event kind may have different event
types that further describe the functional nature of the event
(e.g., host added, host removed).

Events are sent from event dispatchers and received
through event listeners. For instance, the controller may dis-
patch a network link event to all apps that are interested in
network link state changes (i.e., all apps that register link
event listeners). An app that cares about new network links can
use that event to make decisions about what functionality to
perform (e.g., recalculation of bandwidth for QoS guarantees).
Such an app can also gather information about what the control
plane’s state looks like in the present (i.e., API read calls),
request changes to the control plane (i.e., API write calls), or
notify other apps and core services asynchronously (i.e., event
dispatching). That process is repeated by other apps and core
services that register event listeners and react to events, and
the combination of such interactions forms the basis (and
complexity) of the event-driven SDN architecture.

In ONOS, apps can access the control plane’s state through
API read calls (e.g., getHosts()) or by registering to receive
asynchronous events (e.g., listening for HostEvent events).
API write calls can trigger event dispatches. ONOS uses a
special listener for data plane packet events, the PacketPro-
cessor, that allows components to receive or generate data
plane packets.

B. SDN Security Challenges

1) Malicious data plane input: By design, the SDN archi-
tecture decouples the control and data planes. However, control
plane decisions are often made as a result of information

3

gathered from data plane input, allowing attackers to influence
control plane behavior even if the controller and app infrastruc-
tures are assumed to be hardened. Cross-plane attacks, such
as topology poisoning [22], [14], [57], impact control plane
operations by causing denial-of-service or connectivity-based
attacks. Figure 2 shows a representative example of a cross-
plane attack that uses malicious data plane input to produce
an unintended data plane effect.

Attackers can infer whether the network is non-SDN or
SDN and which controller is being used in an SDN setting [4],
[71]. Defenses to date, such as control plane causality track-
ing [59], [62], trusted data plane identities [26], and timing-
based link fabrication prevention [57], are useful in preventing
specific classes of attacks but are not designed for vulnerability
discovery because they track specific execution traces as they
occur rather than all possible execution traces prior to runtime.
Current SDN vulnerability tools, such as BEADS [25] and
DELTA [34], rely on fuzzing techniques that do not easily
capture complex event-based vulnerabilities.

Although controllers that are written in safely typed lan-
guages (e.g., Java) can mitigate unchecked data plane input,
type safety does not completely prevent misuse. An attacker
can try to leverage syntactically valid data that may be
semantically invalid depending on its use. For instance, the
IPv4 address 255.255.255.255 is syntactically valid, but
there may be unintended consequences if a controller or app
component attempts to use it as a host address.

Mitigation approach: EVENTSCOPE analyzes how ma-
licious data plane input and cross-plane attacks can have
cascading effects throughout controller components and apps
as a result of unhandled event types (Section V). We demon-
strate how that analysis allows us to identify ONOS app
vulnerabilities (Section VII).

2) Event-driven apps: SDN controller services and apps
can subscribe to events of interest with event listeners. How-
ever, not all event types of a particular event kind may be
handled. In the absence of well-defined formal properties
(e.g., safety and liveness) that specify what an app’s behavior
ought to be, it is not easy to automatically determine what
constitutes “correct” or “incorrect” behavior. As a result, it
is difficult to find bugs that are syntactically correct but
semantically incorrect regarding the intended app behavior, and
difficult to determine how that behavior affects the data plane.

Network verification approaches [29], [11] require formal
property specifications or do not scale beyond trivial con-
trollers. CONGUARD [66] and DELTA [34] offer models for
reasoning about the ordering of OpenFlow events, but such
events are only one part in a complex, event-driven, network
operating system that must consider additional (and often more
sophisticated) network abstractions.

Mitigation approach: EVENTSCOPE uses a clustering
approach to infer the intended application behavior based on
the insight that apps that perform similar functionality are in-
terested in similar kinds of events and event types (Section IV).
EVENTSCOPE identifies cases in which a given app’s event
types are absent with respect to similar apps and evaluates
whether these absences create vulnerabilities (Section V-B).

SDN app
code

SDN
controller

code

Candidate Vulnerability
Generator

Event
Use

Event Flow Graph
Generator

Missing
Event Types

1 2 3

1 2

3

Data Plane In

Data Plane Out

…

Vulnerability
Validator
Data Plane In

Data Plane Out

…

Vulnerabilities
(and Contexts)

API and
Event Use

Core
Services

Event Use
Matrix

Event
Flow

Graph

Candidate
Vulnerabilities

EVENT FLOW ANALYSIS

EVENT USE ANALYSIS

API definition

Fig. 3: EVENTSCOPE architecture overview.

3) Event flow interactions: As apps can originate from
different parties [59], assessment of system-wide “correct”
behavior is complex when components closely collaborate
and form event-driven dependencies. The event-driven SDN
architecture allows flexible and composable development, with
events helping to provide convenient abstractions and allowing
components to subscribe to asynchronous activities of interest.
Prior work [1], [18], [43], [61], [42] has approached controller
design by providing formally specified runtime languages and
safe-by-construction controllers, but such approaches do not
offer the extensibility of the operating-system-like controllers
used in practice in production.

Understanding how event-driven components in an SDN
interact is challenging because events have both control flow
and data flow elements. Events represent control flow because
they are processed by event listener methods that may call
additional methods depending on the event information, and
they represent data flow because they carry data describing the
event (e.g., a host event contains that host’s details). Although
control flow and data flow can be modeled together in program
dependence graphs [16] or code property graphs [67], analysis
is often limited to single procedures because too many details
prevent the analysis from scaling to complex, inter-procedural
event-driven systems. Further, events can be used to influence
what code paths are or are not taken and to trigger additional
events.

Mitigation approach: EVENTSCOPE uses the event
flow graph to model the key features of an event-driven SDN
system while abstracting away unnecessary control flow details
(Section V-A). The event flow graph shows how triggered
events have consequences elsewhere, particularly when ma-
licious data plane inputs later influence data plane changes.

III. EVENTSCOPE OVERVIEW

We designed EVENTSCOPE to identify cross-plane event-
based vulnerabilities in three phases, as illustrated in Figure 3.

The first phase, the candidate vulnerability generator, takes
the set of SDN apps as input and produces a list of unhandled
event types for each app. In our implementation, we require
the apps’ Java bytecode. As ground truth about which event
types apps should handle is not available, EVENTSCOPE uses
a clustering approach that reports event types that are common
in the cluster but are not handled in a particular app.

The second phase, the event flow graph generator, takes the
apps’ code, the controller’s code, and a definition of controller

4

API calls as inputs and constructs an event flow graph that
records how events propagate and influence the system. This
includes event propagation within the controller as well as
within apps and combinations of apps.

Finally, the event flow graph and the unhandled event types
from the first two phases are combined in the third phase, the
vulnerability validator, to identify the data plane impacts of
unhandled event types. The output of this phase results in a
list of vulnerabilities that can influence the data plane as a
result of unhandled event types.

EVENTSCOPE automates the process and the phases work
together, but for illustrative purposes, we discuss each of
EVENTSCOPE’s three phases separately before discussing the
results from applying EVENTSCOPE to the ONOS SDN con-
troller. In summary:

• The candidate vulnerability generator (Section IV)
generates a list of possible vulnerabilities resulting
from unhandled events based on apps’ event use in
comparison to that of similar apps.

• The event flow graph generator (Section V-A)
analyzes the use of events between components to
construct a concise representation of how events are
passed and how they affect data plane operations.

• The vulnerability validator (Section V-B) filters and
validates the possible missing-event-handling vulner-
abilities from the first component by using the event
flow graph to determine whether the missing event
has had data plane impacts, either in isolation or in
combination with other apps.

Inputs: Users provide EVENTSCOPE with the controller’s
code and apps’ code to be analyzed. In our implementation,
this code is provided as Java bytecode. EVENTSCOPE also
requires a definition of the controller’s northbound (i.e., appli-
cation) interface, which is simply the set of method signatures
that comprise the northbound API.

Outputs: EVENTSCOPE produces a list of vulnerabilities
related to missing-event handling that can impact the data-
plane and the contexts in which the vulnerabilities occur.
Practitioners can investigate such vulnerabilities to report bugs
or to determine if exploits can be realized.

IV. EVENT USE ANALYSIS

In this section, we analyze the use of event kinds and event
types in SDN app components and focus on unhandled events
as signs of potential vulnerabilities. From that information,
EVENTSCOPE generates a list of candidate vulnerabilities.

A. Event Use Methodology

Given the lack of ground truth about how apps should
handle event types, we approach the problem of identifying
possible unhandled event types by analyzing the similarity of
different apps’ uses of events. EVENTSCOPE clusters similar
apps together, and, for each app, marks the unhandled event
types in that app (with respect to that cluster) as a candidate
vulnerability.

Algorithm 1 Candidate Vulnerability Generation
Input: Apps A, event kinds EK , event types ET , threshold τ
Output: List of candidate vulnerabilities VC , event use matrix M
Initialize: M [i][j]← false; ∀i ∈ A,∀j ∈ ET . Event use

matrix MA×ET

D[i][j]← 0; ∀i ∈ A,∀j ∈ A . Distance matrix DA×A

V ← A ∪ ET , E ← ∅,GS ← (V, E) . SimRank graph GS
VC ← ∅ . Candidate vulnerability list VC

1: for each a ∈ A do
2: T ← getHandledEventTypes(a)
3: for each t ∈ T do
4: M [a][t]← true
5: E ← E ∪ {(a, t) , (t, a)}
6: S ← SimRank(GS , A) . Similarity matrix SA×A

7: for each i ∈ S do
8: for each j ∈ S[i] do
9: D[i][j]← 1− S[i][j] . Distance = 1− Similarity

10: C ← hierarchicalCluster(D, τ) . Set of app clusters C
11: for each c ∈ C do
12: u← ∅ . Union of event types within cluster c
13: for each a ∈ C do
14: u← u ∪M [a]

15: for each a ∈ C do
16: d← u \M [a] . Set difference d of cluster and app
17: for each t ∈ d do
18: k ← getEventKind(t, EK , ET)
19: if k is handled by a then
20: VC .append((a, t))

1) Algorithm: We describe EVENTSCOPE’s approach,
shown in Algorithm 1. We assume a set of apps that contain
event listeners, A; a set of event kinds, EK (e.g., HostEvent
in ONOS); a set of event types, ET (e.g., HOST ADDED
in ONOS) that relate to the functional nature of event kinds
in EK ; and a threshold, τ , used to determine the number of
app clusters. For intermediate data structures, we generate an
event use matrix, M , that shows how apps use event types;
a distance matrix, D, that represents the “distances” between
apps in terms of how they are related; and a bipartite directed
graph, GS , that represents the relations between apps and event
types.

The algorithm determines the event types that each app
uses (lines 1–5). It does so using static analysis through the
generation of a control flow graph (CFG) of the relevant event
listener method. If a given event type is handled (line 2), it
is marked in the event use matrix, M , (line 4) and in the
bipartite graph, GS (line 5). The algorithm then computes the
SimRank similarity metric across GS and reduces it to vertices
of interest, or A ⊂ V , to produce the similarity matrix, S
(line 5). It then takes the inverse of the similarity metric to
compute the distance metric (lines 7–9), and uses it to compute
app clusters by using a complete-linkage2 (i.e., maximum
linkage) hierarchical clustering algorithm (line 10).

After the apps are partitioned into clusters, the algorithm
inspects each app relative to its own cluster (lines 11–20). For
each cluster, it generates a union of event types handled by
that cluster’s apps (lines 12–14). For a given app, it computes

2Alternatives include single-linkage and average-linkage clustering. We
chose complete-linkage clustering because it 1) maximizes the distance
between two elements of different clusters and 2) avoids the problem of
grouping dissimilar elements that single-linkage clustering would entail [28].

5

what event types are not handled by that app’s event listener
with respect to the cluster’s union (line 16). In some cases,
the event type will be related to an event kind that the app
does not handle at all, and we do not consider such scenarios
to represent candidate vulnerabilities. When the event type’s
kind is handled by the app (line 19), the algorithm marks the
event kind as a candidate vulnerability (line 20).

2) Design decisions: Initially, we applied the Levenshtein
distance as our distance metric by treating each row of M as
a bit vector, based on prior work on SDN app API use simi-
larity [32]. However, we found that the Levenshtein distance
did not capture the structural similarities among apps, event
kinds, and event types. Instead, we opted for the SimRank
metric, which expresses the idea that “two objects are similar
if they are related to similar objects” [24]. SimRank fits more
naturally with our problem of expressing the similarity of two
apps that have relations to similar event types.

As each app includes a self-defined category, we were
interested in whether such categories could describe functional
event use similarity. However, we found that the categories are
too vague to be meaningful for similar-event-handling identi-
fication, so we opted instead for a distance-based clustering
approach that can be generated even if app categories are not
specified. One example of the problem is that of the forwarding
app fwd and the routing app routing in ONOS, which are
both in the traffic engineering category. While we might expect
those apps to be similar, since they are in the same category
and share the same high-level objective of making traffic
engineering decisions at different OSI layers, it turns out that
the reactive forwarding app responds to new packets to make
its decisions, while the routing app uses the existing network
state to make its decisions. Those functional differences result
in use of radically different event kinds and types.

3) Interpretation: Because apps do not provide well-
defined semantics about their correct operation, we do not have
ground truth about what event types each app should handle.
As a result, we chose to focus on instances of missing event
handling, which we can identify based on knowledge about the
complete set of events. Unfortunately, such instances do not
tell us the extent to which such missing events are intentional
or the extent to which missing events’ exploitation can cause
unexpected behavior. While any instance is arguably a concern,
we wanted to focus our effort on the instances most likely to
be vulnerabilities. As a result, we chose to cluster apps in
order to identify the missing event handling that stands out as
the most “unusual,” with the parameter τ approximating the
unusualness of missing event handling.

As such, event use analysis can be viewed as a filter-
ing step that attempts to identify the most likely unhandled
event types for candidate vulnerabilities among all potential
unhandled event types. EVENTSCOPE can be configured to be
conservative and mark all unhandled event types as potential
bugs; doing so requires setting τ = 1.0 to generate 1 cluster.

B. Event Use Results

We evaluated EVENTSCOPE’s event use analysis using
ONOS v1.14.0 [46]. In addition to ONOS’s core services, the
ONOS codebase includes third-party apps written by indepen-

De
vi

ce
Ev

en
t:

DE
VI

CE
_A

DD
ED

De
vi

ce
Ev

en
t:

DE
VI

CE
_A

VA
IL

AB
IL

IT
Y_

CH
AN

GE
D

De
vi

ce
Ev

en
t:

DE
VI

CE
_R

EM
OV

ED
De

vi
ce

Ev
en

t:
DE

VI
CE

_S
US

PE
ND

ED
De

vi
ce

Ev
en

t:
DE

VI
CE

_U
PD

AT
ED

De
vi

ce
Ev

en
t:

PO
RT

_A
DD

ED
De

vi
ce

Ev
en

t:
PO

RT
_R

EM
OV

ED
De

vi
ce

Ev
en

t:
PO

RT
_S

TA
TS

_U
PD

AT
ED

De
vi

ce
Ev

en
t:

PO
RT

_U
PD

AT
ED

Ed
ge

Po
rtE

ve
nt

: E
DG

E_
PO

RT
_A

DD
ED

Ed
ge

Po
rtE

ve
nt

: E
DG

E_
PO

RT
_R

EM
OV

ED
Fl

ow
Ru

le
Ev

en
t:

RU
LE

_A
DD

ED
Fl

ow
Ru

le
Ev

en
t:

RU
LE

_R
EM

OV
ED

Fl
ow

Ru
le

Ev
en

t:
RU

LE
_U

PD
AT

ED
Ho

st
Ev

en
t:

HO
ST

_A
DD

ED
Ho

st
Ev

en
t:

HO
ST

_M
OV

ED
Ho

st
Ev

en
t:

HO
ST

_R
EM

OV
ED

Ho
st

Ev
en

t:
HO

ST
_U

PD
AT

ED
In

te
nt

Ev
en

t:
FA

IL
ED

In
te

nt
Ev

en
t:

IN
ST

AL
LE

D
In

te
nt

Ev
en

t:
IN

ST
AL

L_
RE

Q
In

te
nt

Ev
en

t:
PU

RG
ED

In
te

nt
Ev

en
t:

RE
AL

LO
CA

TI
NG

In
te

nt
Ev

en
t:

W
IT

HD
RA

W
N

In
te

nt
Ev

en
t:

W
IT

HD
RA

W
_R

EQ
In

te
rfa

ce
Ev

en
t:

IN
TE

RF
AC

E_
AD

DE
D

In
te

rfa
ce

Ev
en

t:
IN

TE
RF

AC
E_

RE
M

OV
ED

In
te

rfa
ce

Ev
en

t:
IN

TE
RF

AC
E_

UP
DA

TE
D

Lin
kE

ve
nt

: L
IN

K_
AD

DE
D

Lin
kE

ve
nt

: L
IN

K_
RE

M
OV

ED
Lin

kE
ve

nt
: L

IN
K_

UP
DA

TE
D

M
ca

st
Ev

en
t:

RO
UT

E_
AD

DE
D

M
ca

st
Ev

en
t:

RO
UT

E_
RE

M
OV

ED
M

ca
st

Ev
en

t:
SI

NK
_A

DD
ED

M
ca

st
Ev

en
t:

SI
NK

_R
EM

OV
ED

M
ca

st
Ev

en
t:

SO
UR

CE
_A

DD
ED

M
ca

st
Ev

en
t:

SO
UR

CE
_U

PD
AT

ED
Ne

tw
or

kC
on

fig
Ev

en
t:

CO
NF

IG
_A

DD
ED

Ne
tw

or
kC

on
fig

Ev
en

t:
CO

NF
IG

_R
EG

IS
TE

RE
D

Ne
tw

or
kC

on
fig

Ev
en

t:
CO

NF
IG

_R
EM

OV
ED

Ne
tw

or
kC

on
fig

Ev
en

t:
CO

NF
IG

_U
NR

EG
IS

TE
RE

D
Ne

tw
or

kC
on

fig
Ev

en
t:

CO
NF

IG
_U

PD
AT

ED
Re

gi
on

Ev
en

t:
RE

GI
ON

_M
EM

BE
RS

HI
P_

CH
AN

GE
D

Re
gi

on
Ev

en
t:

RE
GI

ON
_U

PD
AT

ED
To

po
lo

gy
Ev

en
t:

TO
PO

LO
GY

_C
HA

NG
ED

Event Kind: Event Type

D: bandwidthmgr
G: pathpainter

I: kafkaintegration
I: openstacknetworking

I: openstacknode
I: openstackvtap

I: rabbitmq
I: vtn

M: artemis
M: faultmanagement

M: inbandtelemetry
M: incubator

M: metrics
O: newoptical

O: optical
O: roadm

S: acl
T: bgprouter

T: evpnopenflow
T: fwd
T: imr

T: mcast
T: mfwd
T: odtn

T: ofagent
T: p4tutorial

T: pi
T: pim

T: proxyarp
T: ra

T: reactive
T: routing

T: scalablegateway
T: sdnip

T: segmentrouting
T: simplefabric

T: tetopology
T: virtualbng

T: vpls
U: dhcp

U: dhcprelay
U: mlb

U: mobility
U: pce

U: routeservice

Ap
p

Ca
te

go
ry

: A
pp

 N
am

e

Fig. 4: ONOS event use matrix, M . Black cells represent
event types that are handled by event() methods. Horizontal
dividers represent app categories, and vertical dividers repre-
sent event kinds. (App category key: D = default, G = GUI,
I = integration, M = monitoring, O = optical, S = security,
T = traffic engineering, and U = utility.)

0.0 0.2 0.4 0.6 0.8 1.0
SimRank Distance

T: mfwdO: newopticalT: imrU: pceG: pathpainterT: fwdM: metricsO: opticalM: faultmanagementM: incubatorI: kafkaintegrationI: rabbitmqT: simplefabricT: raI: openstacknodeT: bgprouterO: roadmT: piT: segmentroutingI: openstacknetworkingI: openstackvtapT: mcastU: mobilityT: vplsI: vtnS: aclT: virtualbngM: inbandtelemetryT: p4tutorialU: dhcprelayT: evpnopenflowU: routeserviceT: odtnT: scalablegatewayM: artemisT: reactiveD: bandwidthmgrT: tetopologyU: dhcpT: routingT: pimT: sdnipU: mlbT: ofagentT: proxyarp

Ap
p

Ca
te

go
ry

: A
pp

 N
am

e

Fig. 5: Dendrogram representation of ONOS network event
type similarity among apps, based on the SimRank distance
metric. The dashed vertical line represents a threshold τ =
0.90 with a partitioning of 9 clusters.

6

dent developers. We explain each part of the methodology as
applicable to ONOS and its apps.

1) ONOS’s event system: ONOS events implement the
Event interface; they include subject() and type()
methods that describe what the event is about (e.g., a Host) and
what type the event is, respectively. ONOS events are used for
various subsystems, so we limit our study to network-related
events only.3

We found that ONOS contains 95 network event listeners
across 45 apps’ event listeners.4 Popular event kinds handled
were DeviceEvent (25 instances), NetworkConfigEvent (22
instances), and HostEvent (18 instances). Overall, we found
45 event types among 11 (network) event kinds.

For each app’s event listeners, we used static analysis on
the listeners’ bytecode to generate control flow graphs (CFGs)
of any event handlers (i.e., event() methods) within that
app. Within each method, we considered an event type handled
if it results in the call of other functional methods; we consid-
ered an event type to be not handled if it only executed non-
functional methods (e.g., logging) or immediately returned.

2) ONOS unhandled event types: Figure 4 shows
EVENTSCOPE’s generated event use matrix M of the 45 apps
included with the ONOS codebase. Each ONOS app includes a
self-defined category, and categories are grouped by horizontal
dividers. Each event kind is grouped by vertical dividers.
Figure 5 shows the dendrogram of the resulting app clusters,
based on SimRank distance and complete-linkage clustering.

We empirically chose a threshold (τ = 0.90) that yielded a
number of clusters (i.e., 9) similar to the number of categories
of ONOS apps (i.e., 8) based on the assumption that there exist
at least as many categories as there are functional differences
among apps. We found that that threshold worked well in the
rest of our evaluation. (See Appendix C for an evaluation of τ
on detection rates.) We found that setting the threshold too low
(i.e., more clusters) created more singleton app clusters, which
should be avoided because each cluster’s union of event types
becomes the event types the app handles. However, setting the
threshold too high (i.e., fewer clusters) clustered apps with
too few functional similarities. Based on that threshold, we
generated 116 candidate vulnerabilities, which were used as
input into the next stage of EVENTSCOPE (Section V).

V. EVENT FLOW ANALYSIS

Given a list of candidate vulnerabilities, we identify which
vulnerabilities are reachable from the data plane and affect
the data plane. To do so, we generate an event flow graph
that shows how apps and the controller use events, and how
these usages of events can interact to generate control flow
in the control plane. Using that graph, we then validate
our candidate vulnerabilities by analyzing how they impact
subsequent control plane and data plane operations, looking
for impacts in the control plane that can be caused by other
data plane events. That results in a list of vulnerabilities with
real impacts on the data plane.

3Event implementation classes with the prefix org.onosproject.net.*.
4We note that ONOS core service components also include event listeners

for inter-service notifications. We did not evaluate those listeners’ event uses
because we assume that all event types handled by each core service event
listener are the event types necessary for correct functionality.

A. Event Flow Graph Generation

In order to determine reachable candidate vulnerabilities
from the data plane that affect the data plane (via the control
plane), EVENTSCOPE uses static analysis to create an event
flow graph that illustrates how events and API calls propagate
from the data plane to the controller and apps.

1) Definitions: We formalize a component as a fragment of
the SDN codebase that begins at an event listener method or
core service method and ends at an API boundary or event
dispatch. An app or core service can have more than one
component if it has more than one event listener. As a result of
that definition, each component serves as an entry point5 into
control plane functionality. Our objective is to determine the
fragments of controller and app code that are reachable from
each entry point.6

Formally, an event flow graph, denoted by G = (V, E), is
a directed, multi-edged graph that models the abstractions for
inter-procedural and inter-component control and data flows
in the SDN control plane. Event flow graphs summarize the
necessary control and data flows among components needed
for event flow analysis. Vertices, denoted by V , consist of
one of the following types: event listeners (represented as
entry point methods), API services (represented as an API
interface method or its implemented concrete method), and
representations of data plane input (DPIn) and data plane
output (DPOut). Edges, denoted by E , are labeled and consist
of one of the following types: API read calls (API_READ),
API write calls (API_WRITE), data plane inputs to methods
(DP_IN), methods’ output to the data plane (DP_OUT), or
passing of an event type (e.g., HOST ADDED event type of
the HostEvent event kind).

EVENTSCOPE uses a two-phase process in which it first
examines which events are used within each app and then
considers how these events propagate and cause other events in
the context of multiple apps. As a result, EVENTSCOPE’s event
flow graph can represent multiple apps as well as dependencies
among apps. The dependencies among applications for event
processing are shown as edges in the event flow graph. One
event that is processed by multiple applications (i.e., event
listeners) is represented as a node with multiple outgoing
labeled edges with the respective event type; each edge is
directed towards an event listener of that event kind.

2) Methodology: EVENTSCOPE’s approach is shown in
Algorithm 2. It initializes the event flow graph’s vertices to
be the set of event listeners and representations for data plane
inputs and outputs. It begins with the set of event listeners
as the components of entry points to check (line 1). For
each entry point, it generates a call graph (line 5). Within
the call graph, it checks whether calls relate to an API read
(lines 7–10), to an API write (lines 11–14), or to the event
dispatcher to generate new events (lines 15–16). It links the
event dispatchers and event listeners together in the event flow
graph by using the event use matrix, M , generated in the
prior step (Section IV); each event type that is handled by

5In traditional static analysis, a program has a well-defined entry point: the
main() function. However, since SDN is event-driven, no main() function
exists [62]. To correct for the lack of a main() function and to account for
the event-driven architecture, we use each component as an entry point.

6Lu et al. [38] define that as “splitting” in the component hijacking problem.

7

Algorithm 2 Event Flow Graph Generation
Input: API read methods Ar , API write methods Aw, data plane

input methods Di, data plane output methods Do, event listener
methods El, event kinds EK , event types ET , event use matrix
M

Output: Event flow graph G
Initialize: V ← El ∪ {DPIn,DPOut}, E ← ∅
S ← El . Stack S of entry points (i.e., components) left to
check
C ← ∅ . Checked components C
Ed ← ∅ . Components that dispatch events Ed

1: while S is not empty do
2: e← S.pop . Entry point method e
3: if e ∈ C then
4: continue . Skip entry point if already processed
5: (cv, ce)← generateCG(e) . Call graph vertices cv and

edges ce
6: for each c ∈ cv do
7: if c ∈ Ar then
8: V ← V ∪ {c}
9: E ← E ∪ {(c, e)} . Labeled edge API_READ

10: S.push(c)
11: else if c ∈ Aw then
12: V ← V ∪ {c}
13: E ← E ∪ {(e, c)} . Labeled edge API_WRITE
14: S.push(c)
15: else if c is the event dispatch method then
16: Ed ← Ed ∪ {(c)}
17: C ← C ∪ e
18: E ← linkListenersDispatchers(E , Ed, El, EK , ET ,M) .

Labeled edges of particular event type t ∈ ET

19: E ← linkDataPlane(E , Di, Do) . Labeled edges DP_IN or
DP_OUT

20: G ← (V, E)

fwd
ReactiveForwarding

ReactivePacketProcessor

PacketContext
block(…)

FlowObjectiveService
forward(…)

PacketContext
send(…)

PacketContext
isHandled(…)

PacketContext
inPacket(…)

Data Plane Out

HostService
getHost(…)

Data Plane In

Fig. 6: Event flow graph of fwd’s packet processor. Blue
rectangles represent event listeners and packet processors, gray
ellipses represent API methods, and dashed edges represent
API calls.

a particular listener is represented as its own edge, so multi-
edges are possible (line 18). Finally, it identifies core service
components that take in data plane input or generate data plane
output, and links those to the data plane input and output
vertices (line 19).

3) Results: To show how an event flow graph abstracts
useful information for understanding SDN architecture events,
we consider the partial event flow graph from ONOS shown in
Figure 6. It shows the forwarding app (fwd) packet processor
component as an entry point. (For event flow graphs that in-
clude event dispatch edges, see Figures 8 and 9 in Section VII

and Figure 11 in Appendix B.) General static analysis tools
produce control flow graphs (CFGs) for each procedure or
method, as well as a call graph (CG) for inter-procedural anal-
ysis; however, static analysis tools face challenges regarding
the understanding of API behavior and the semantics of a
given program’s domain [58]. While both CFGs and a CG
are necessary for control or data flow analyses, neither type
of graph represents the SDN domain’s semantics of events or
API behavior at the right level of abstraction.

We generated an ONOS event flow graph whose com-
ponents include core services, providers7, and 45 apps. The
ONOS event flow graph’s nodes consists of representations of
143 event listeners, 25 packet processors, 81 API call methods
of core services, 1 data plane input node, and 1 data plane
output node. The ONOS event flow graph’s edges consist
of representations of 396 API calls, 352 event dispatches,
and 21 data plane interactions. Appendix B shows a partial
representation of that event flow graph based on 5 sample apps
and the core services that they use.

Because ONOS does not specify a precise set of API calls
that comprise the northbound API [59], we used the public
method signatures of the *Service and *Provider classes,
along with those methods’ return values, to determine API
read and write calls, resulting in 123 API read call methods, 87
API write call methods, 1 method directly related to data plane
input, and 44 methods directly related to data plane output and
effects. We identified event dispatching based on direct calls to
the event dispatcher for local events (e.g., post()) or indirect
calls to a store delegate8 for distributed events.

B. Vulnerability Validation

Now that we have an event flow graph, we can combine it
with our candidate vulnerabilities to understand the extent to
which unhandled event types have data plane consequences.

We focus on valid vulnerabilities as those in which the
following conditions are met: 1) an app’s event listener does
not handle a particular event type, 2) that event listener can be
called as a result of actions triggered from data plane input,
and 3) in handling the other event types, that event listener
can take some subsequent action that affects the data plane
(i.e., data plane output). In essence, we investigate the cases
in which such an event handler would otherwise be affected
by data plane input and have an effect on the data plane.
Vulnerabilities defined in this way can be expressed as path
connectivity queries in the event flow graph.

1) Context: Event handling vulnerabilities do not occur in
isolation, but as part of a complex interaction web involving
many other event handlers and apps We need to consider
that context when discussing a given vulnerability. We borrow
from Livshits and Lam [37] the intuition that exploitable
vulnerabilities can occur as a result of a multi-stage exploit
via an initial data injection and a subsequent app manipulation.

7In ONOS, a provider interacts with core services and network protocol
implementations [48]. We consider provider services to be core services.

8ONOS uses distributed data stores across ONOS instances to store network
state information. An instance can notify other instances of a change to the
data store (e.g., a MapEvent event update of a Host object modification in the
host data store). That notification causes each instance to re-dispatch events
locally (e.g., a HostEvent event).

8

Algorithm 3 Vulnerability Validation
Input: Event flow graph G, list of candidate vulnerabilities VC ,

event use matrix M , apps A
Output: List of vulnerabilities and contexts V
Initialize: V ← ∅ . Vulnerabilities and contexts list V
1: for each (a, t) ∈ VC do . App a ∈ A and event type t ∈ ET

2: El ← getEventListeners(a,G) . El ⊂ G’s vertices
3: if ¬(pathExists(DPIn→ e ∈ El → DPOut,G)) then
4: continue
5: c+ ← ∅, c− ← ∅ . Present context set c+, absent context

set c−
6: for each ai ∈ A \ {a} do . All apps except a
7: Eli ← getEventListeners(ai,G) . Eli ⊂ G’s vertices
8: if pathExists(DPIn→ e ∈ Eli → DPOut,G) then
9: if t ∈ getHandledEventTypes(Eli ,M) then

10: c+ ← c+ ∪ ai
11: else
12: c− ← c− ∪ ai
13: V.append((a, t, c+, c−))

As a result, we define the present context as the set of other
apps that 1) handle the vulnerability’s missing event type in
the absence of the vulnerable app’s event handler’s handling
of it, 2) are affected by data plane input, and 3) have data
plane effects. We define absent context as the set of other apps
that, like the app in question, do not handle the vulnerability’s
missing event type but can be affected by data plane input and
have data plane effects.

The present context lets us determine what the data plane
effects are if the unhandled event type is dispatched. The
absent context lets us determine what other apps might have
concurrent influence over data plane effects. We note that
context is necessary but not sufficient for exploit generation.
Context is an over-approximation of the set of apps needed to
exploit the vulnerability.

We note that exploit generation is nontrivial and that
automatic exploit generation [3] is an ongoing research
area. EVENTSCOPE’s output includes “valid” vulnerabilities
and contexts that EVENTSCOPE believes to be reachable
from the data plane and to have data plane impacts. While
EVENTSCOPE’s validation provides strong soundness proper-
ties, static analysis is necessarily imprecise; manual verifica-
tion is still recommended. EVENTSCOPE provides precisely
the details that need to be included in a bug report. How-
ever, the tool neither provides a guarantee that a bug exists
nor automatically submits bug reports. For the vulnerabilities
EVENTSCOPE found, we manually examined the source code
to confirm that the vulnerabilities existed.

2) Methodology: EVENTSCOPE’s approach for vulnerabil-
ity validation is shown in Algorithm 3. It uses the event flow
graph, candidate vulnerabilities, and the event use matrix as
inputs. Each candidate vulnerability is represented as a tuple
of the app and unhandled event type (line 1). For each event
type, EVENTSCOPE gets the app’s event listeners (line 2). It
performs path connectivity queries over the event flow graph.
If at least one path does not exist that starts from the data plane,
goes through one of the app’s event handlers, and ends in the
data plane, then the algorithm does not consider a vulnerability
to be relevant, either because the event listener is not affected
by data plane input or because the resulting path does not have

0 10 20
Latency [s]

0.00
0.25
0.50
0.75
1.00

CD
F

(a) Latency CDF

0 100 200
Methods traversed

0.00
0.25
0.50
0.75
1.00

CD
F

(b) Method traversal CDF

Fig. 7: Component analysis performance results.

data plane effects (lines 3–4).

The algorithm initializes the present and absent context
sets to be empty (line 5). It inspects all of the other apps in
the event flow graph to build the context (line 6). If another
app’s event listener is affected by data plane input and has data
plane effects (line 8), it checks whether the missing event type
is handled by that app (line 9) or not (line 11), and builds the
context sets accordingly (lines 10 and 12). It then appends the
vulnerability to the vulnerability list (line 13).

C. Performance Results

We ran EVENTSCOPE using an Intel Core i5-4590
3.30 GHz CPU with 16 GB of memory on ONOS and its
associated apps. Figure 7 shows the cumulative distribution
functions (CDFs) of the component analysis latency (Fig-
ure 7a) and the number of methods traversed in the call
graph generation (Figure 7b); the latency corresponds to the
computations of lines 2–17 in Algorithm 2, and the methods
traversed correspond to line 5 in Algorithm 2.

In total, we analyzed 249 components found within
ONOS’s 1.2 million lines of Java, which required full traversals
across 8064 method invocations for call graph generation.
We found that the median per-component analysis time was
1.55 s and the mean per-component analysis time was 3.14 s,
or approximately 13 min in total. For call graph generation,
we found that each component required a median traversal
of 16 methods and a mean traversal of 32 methods. We also
measured EVENTSCOPE’s peak memory consumption by using
time and found that EVENTSCOPE used 1.82 GB of memory.

VI. IMPLEMENTATION

We implemented EVENTSCOPE using a combination of
Python and Java. In Python, we used Scikit-learn [52] to
perform hierarchical clustering in the event use analysis. In
Java, we used Soot [60] to generate the control flow graphs
and call graphs used for event use analysis and for determining
entry points. Soot creates an intermediate representation in
Jimple. We also used JGraphT [44] to store in-memory repre-
sentations of event flow graphs and to query path connectivity.
Source code for our implementation’s components is available
at https://www.github.com/bujcich/EventScope.

For connectivity queries in lines 3 and 8 in Algorithm 3
(i.e., pathExists()), we used Dijkstra’s algorithm. The
worst-case performance time for each pathExists() query
can be optimized [19] to O(2 (|E|+ |V| log |V|)), where |E|
represents the number of event flow graph edges and |V|

9

represents the number of event flow graph nodes. In practice,
we found that the small number of apps and events did not
pose a challenge for connectivity computations.

Soot operates on Java bytecode, which allows
EVENTSCOPE to analyze closed-source Java-based controllers
and apps. Similar program analysis tools, such as angr [56],
can operate on closed-source binary executables. Using
bytecode is advantageous, as we can use EVENTSCOPE to
generate event flow graphs without requiring Java source
code. Thus, EVENTSCOPE can be useful for practitioners as
a code audit tool. Although we did not encounter any apps
that used dynamic calls, such as the Java language’s reflection
API, TamiFlex [10] extends Soot to perform static analysis
that accounts for reflection.

Although our implementation generates a list of vulner-
abilities for ONOS, EVENTSCOPE is not specific to ONOS.
EVENTSCOPE’s analysis and methodology can be applied
to any event-driven SDN controller, which includes popular
controllers such as OpenDaylight, HPE VAN, and Floodlight.

VII. ONOS VULNERABILITY EVALUATION RESULTS

EVENTSCOPE identified 14 vulnerabilities that satisfy all
of the following properties: 1) the vulnerable event handler
features an unhandled event type, which was identified through
similarity clustering analysis; 2) the event handler can be
reached from data plane input; and 3) the event handler can
reach a data plane output.

Table I shows the 14 vulnerabilities, based on app, event
kind, and unhandled event types. Table I also provides sample
paths in the event flow graph. We found that all vulnerabilities
involved the HostEvent event kind, which indicates that data
plane input has the most effect on host information in ONOS.

EVENTSCOPE’s output included 14 possible vulnerabili-
ties. We manually investigated each vulnerability in the source
code and determined that all of them could be exploited from
the data plane. As a result, Table I represents EVENTSCOPE’s
complete output with no false positives. EVENTSCOPE’s final
phase essentially filters out missing event handling that cannot
be reached from the data plane or trigger impacts on the
data plane; as a result, the output provides strong soundness
properties. As we do not have ground truth about which
unhandled event types should be handled, we note that the
event use analysis in Section IV-A should be interpreted as
a filter of the unhandled event types that are most likely to
require attention, based on such event types’ absence vis-à-vis
a cluster of the most similar apps. As noted earlier, we chose
the clustering threshold that produced a number of clusters
closely matched to the number of ONOS app categories.

We describe exploits for two of the vulnerabilities below
in Sections VII-A and VII-B, and then, for the sake of space,
briefly discuss the impact of the other vulnerabilities. For the
exploits we created, we used a Mininet [31] SDN network.
We wrote our exploit scripts in Python and used the Scapy [9]
network packet library to generate data plane input.

We notified the ONOS Security Response Team of the
vulnerabilities and exploits that we discovered through a re-
sponsible disclosure process. We explained the vulnerabilities
and demonstrated working exploits.

A. Data Plane Access Control Bypass with acl and fwd (CVE-
2018-12691)

1) Summary: We found that an attacker could bypass data
plane access control policies by sending semantically invalid
packets into the data plane to corrupt the controller’s view
of hosts. That prevented the access control app, acl, from
installing flow deny rules, and that effectively bypassed the
desired access control policy.

We assume a topology of at least two hosts: h1 and h2.
The attacker controls host h1 and wants to communicate
with h2. An access control policy prevents h1 and h2 from
communicating.

2) Method: The attack occurs in two stages.

First, the attacker host h1 sends into the data plane an
ICMP packet with an invalid source IP address (e.g., the
broadcast address). The host provider learns about host h1
from the ICMP packet’s source MAC address, creates a host
object (without an associated IP address), and generates a
HostEvent event with a HOST ADDED event type.9 On the
HOST ADDED event type, acl checks whether flow deny
rules should be installed for the added host. Since acl performs
this check at the IP layer only and host h1 has an empty IP
address list, no flow deny rules are installed.

Next, the attacker host h1 sends traffic intended for the tar-
get host h2. The host provider references the prior host object
representing host h1, updates host h1’s list of IP addresses
with host h1’s real IP address, and generates a HostEvent
event with a HOST UPDATED event type. Prior to patching
the vulnerability, acl did not check for the HOST UPDATED
event type and took no action with such events. Another app,
such as fwd, then installs flow allow rules from the attacker
host h1 to the target host h2.

3) Results and implications: We wrote an exploit that
performed the attack, and we were able to demonstrate that
messages could be sent from the attacker to the target. From a
defender’s perspective, the exploit’s effects may not be obvious
immediately because the flow deny rules were never installed.
A defender would need to check for evidence of the absence
of the flow deny rules or the unintended presence of the flow
allow rules. Since the host object corruption in the first stage
need not occur at the same time as the lateral movement in
the second stage, a stealthy attacker could wait until he or she
needed to use such elevated access at a later time.

4) Event flow graph: Figure 8 shows the partial event flow
graph with the relevant code paths used by the attacker. The
attack’s first stage follows the left-side path, in which the attack
corrupts the host information in the HostProviderService.
The attack’s second stage triggers a HOST UPDATED event
type that does not get handled by acl’s host event listener; in
addition, the attack’s second stage succeeds as shown by the
right-side path.

9The HOST ADDED event type assumes that the controller has never seen
that host’s MAC address before, but that is unlikely to be true if host h1 had
sent any traffic prior to attacker compromise. However, if we assume that the
attacker has root privileges on host h1, the attacker can change host h1’s
network interface MAC address. Thus, host h1 will appear as a newly added
host and trigger the HOST ADDED event type if the host subsequently sends
any traffic into the data plane.

10

TABLE I: Event Listener Vulnerabilities Based on Event Flow Graph Analysis and Event Use Filtering (τ = 0.90).

CVE ID App Unhandled type Example event flow graph path showing potential data plane input to data plane
effect

∗ CVE-2018-12691 acl HOST UPDATED
See Figures 8 and 9 for event flow graph examples.

1 CVE-2019-11189 acl HOST MOVED

2 CVE-2019-16300 acl HOST REMOVED

3 CVE-2019-16298 virtualbng HOST MOVED DPIn
DP IN−−−→ inPacket()

API READ−−−−−−→ provider.host.InternalHostProvider
API WRITE−−−−−−→

hostDetected()
HOST ADDED−−−−−−−−→ virtualbng.InternalHostListener

API WRITE−−−−−−→
startMonitoringIp()

DP OUT−−−−−→ DPOut
4 CVE-2019-16298 virtualbng HOST REMOVED

5 CVE-2019-16298 virtualbng HOST UPDATED

6 CVE-2019-16299 mobility HOST ADDED DPIn
DP IN−−−→ inPacket()

API READ−−−−−−→ provider.host.InternalHostProvider
API WRITE−−−−−−→

hostDetected()
HOST MOVED−−−−−−−−→ mobility.InternalHostListener

API WRITE−−−−−−→
removeFlowRules()

DP OUT−−−−−→ DPOut
7 CVE-2019-16299 mobility HOST REMOVED

8 CVE-2019-16299 mobility HOST UPDATED

9 CVE-2019-16301 vtn HOST MOVED DPIn
DP IN−−−→ inPacket()

API READ−−−−−−→
provider.host.InternalHostProvider

API WRITE−−−−−−→ hostDetected()
HOST ADDED−−−−−−−−→

vtn.InternalHostListener
API WRITE−−−−−−→ forward()

DP OUT−−−−−→ DPOut

10 CVE-2019-16302 evpnopenflow HOST MOVED DPIn
DP IN−−−→ inPacket()

API READ−−−−−−→ provider.host.InternalHostProvider
API WRITE−−−−−−→

hostDetected()
HOST ADDED−−−−−−−−→ evpnopenflow.InternalHostListener

API WRITE−−−−−−→
forward()

DP OUT−−−−−→ DPOut
11 CVE-2019-16302 evpnopenflow HOST UPDATED

12 CVE-2019-16297 p4tutorial HOST MOVED DPIn
DP IN−−−→ inPacket()

API READ−−−−−−→ provider.host.InternalHostProvider
API WRITE−−−−−−→

hostDetected()
HOST ADDED−−−−−−−−→ p4tutorial.InternalHostListener

API WRITE−−−−−−→
applyFlowRules()

DP OUT−−−−−→ DPOut
13 CVE-2019-16297 p4tutorial HOST REMOVED

14 CVE-2019-16297 p4tutorial HOST UPDATED

∗ We note that we originally discovered CVE-2018-12691 manually, which led us to investigate event-based vulnerabilities and to create the EVENTSCOPE tool.
We include CVE-2018-12691 here for completeness.

acl.impl
AclManager

InternalHostListener

FlowRuleService
applyFlowRules(…)

Data Plane Out

HostProviderService
hostDetected(…)

HOST
REMOVED

HOST
MOVED

HOST
ADDED

HOST
UPDATED

Data Plane In

PacketContext
inPacket(…)

provider.host.impl
HostLocationProvider
InternalHostProvider

fwd
ReactiveForwarding

ReactivePacketProcessor

FlowObjectiveService
forward(…)

Fig. 8: Partial event flow graph showing vulnerable code paths
used in CVE-2018-12691. Blue rectangles represent event
listeners and packet processors, gray ellipses represent API
methods, bold edges represent event dispatches, and dashed
edges represent API calls. (Dotted gray edges represent un-
handled event types, which are shown for reference.)

In the analysis of acl, EVENTSCOPE produces an absent
context set, c−, that includes fwd. The absent context set
represents other event listeners and packet processors that
might also respond to the same set of data plane input and
produce data plane effects. A practitioner would discover that
an app in the absent context set is producing undesirable effects
via flow rule installation by fwd.

B. Data Plane Access Control Bypass with acl, mobility, and
fwd (CVE-2019-11189)

1) Summary: We found that an attacker could bypass the
data plane access control policies by spoofing another host
using ARP reply packets. Such a spurious location change can
allow the host mobility app, mobility, to remove acl’s flow
deny rules. Since acl does not reinstall such flow deny rules
after a location change, the attacker can subvert network policy
with increased access.

We assume a topology of at least three hosts: h1, h2, and
h3. The attacker controls h1 and h3 and desires access to h2.
Hosts h1 and h3 have different data plane connection points.
An access control policy prevents communication between h1
and h2 as well as between h3 and h2.

2) Method: The attack occurs in two stages.

First, the attacker host h1 attempts to connect to the target
host h2, but the connection is denied by acl’s flow deny rules
that were created when the hosts were detected or when a
new access control policy was installed. The other attacker-
controlled host, h3, sends into the data plane an ARP reply that
spoofs the identity of host h1. The host provider determines

11

acl.impl
AclManager

InternalHostListener

FlowRuleService
applyFlowRules(…)

Data Plane Out

HostProviderService
hostDetected(…)

HOST
REMOVED

HOST
MOVED

HOST
ADDED

HOST
UPDATED

mobility
HostMobility

InternalHostListener

HOST
REMOVED

HOST
MOVED

HOST
ADDED

HOST
UPDATED

Data Plane In

PacketContext
inPacket(…)

provider.host.impl
HostLocationProvider
InternalHostProvider

fwd
ReactiveForwarding

ReactivePacketProcessor

FlowObjectiveService
forward(…)

FlowRuleService
removeFlowRules(…)

Fig. 9: Partial event flow graph showing vulnerable code paths
used in CVE-2019-11189. Blue rectangles represent event
listeners and packet processors, gray ellipses represent API
methods, bold edges represent event dispatches, and dashed
edges represent API calls. (Dotted gray edges represent un-
handled event types, which are shown for reference.)

that host h1 has “moved” to the same connection point as
host h3 and generates a HOST MOVED event type. On the
HOST MOVED event type, mobility performs a network-
wide cleanup that removes “old” flow rules whose source or
destination MAC addresses match the respective host’s MAC
address. Thus, mobility removes acl’s flow deny rules related
to host h2.

Next, the attacker host h1 attempts again to connect to the
target host h2, and that causes the host provider to assume
that host h1 has moved to its original location and thus
triggers a HOST MOVED event type. Prior to patching the
vulnerability, acl did not check for the HOST MOVED event
type and took no action to reinstall the former flow deny rules.
Another app, such as fwd, then installs flow allow rules from
the attacker host h1 to the target host h2.

3) Results and implications: We wrote an exploit that
performed the attack and were able to demonstrate that mes-
sages could be sent from the attacker to the target. Although
the attack assumed that the attacker controlled two hosts on
different connection points, an attacker who initially controls
only one host could use the previous exploit in Section VII-A
to compromise a second host so as to perform the attack in this
section. Much like the exploit in Section VII-A, the increased
access has significant consequences if our assumptions about
the security of data plane access control are incorrect. For
instance, if hosts h1 and h2 were segmented and isolated by
policy (e.g., to satisfy regulatory compliance requirements),
then clever manipulation of host events can effectively bypass
such protections.

4) Event flow graph: Figure 9 shows the partial event flow
graph with the relevant code paths used by the attacker. The
attack’s first stage follows the path through the host mobility
app, mobility, in the figure’s center. The host mobility app

responds to the HOST MOVED event type and removes
flow rules. The access control app, acl, does not handle the
HOST MOVED event, and thus the app does not install new
flow rules. The attack’s second stage succeeds as shown by
the path on the right side of the figure.

In the analysis of acl, EVENTSCOPE produces a present
context set, c+, that includes mobility. The present context set
indicates how the unhandled event type (i.e., HOST MOVED)
is handled by other event handlers of the same event kind
(i.e., the HostEvent event kind). A practitioner would deter-
mine that mobility uses flow removal to produce undesirable
effects. The absent context set, c−, includes the forwarding
app, fwd. A practitioner would determine that fwd uses flow
rule installation to produce undesirable effects.

C. Other Vulnerabilities

In Table I, we summarize the remaining vulnerabilities that
EVENTSCOPE discovered, grouped by app.

Vulnerabilities 3–5 (virtualbng): The virtual broadband
network gateway app, virtualbng, maintains a relationship
between a network’s set of private IP addresses and public-
facing IP addresses on the Internet [49]. The app also installs
network intents, which get translated to new flow rules, to
allow the network’s hosts with private IP addresses to connect
to the Internet. The app’s host event listener handles the
HOST ADDED event type but does not handle the remain-
ing three host event types. As a result, the app does not
handle any state updates about the virtual gateways it has
previously created if a host changes its information (e.g., new
location). A malicious host could spoof that host’s identity,
via a process similar to that described in Section VII-B2, to
cause HOST UPDATED or HOST MOVED event types to
be triggered. Furthermore, when a host is removed, the app
does not asynchronously remove its intents (or, by extension,
its flow rules) that it previously installed because it does not
handle HOST REMOVED event types.

Vulnerabilities 6–8 (mobility): The host mobility app,
mobility, listens for host-related events and cleans up any
related flow rules if a host has moved. Related work [20] has
shown how the host mobility app in ONOS can be abused
by hosts to force ONOS to reinstall flow rules and cause a
control plane denial-of-service attack. Instead, we focus here
on the absence of what event types mobility handles. The
app’s host event listener handles the HOST MOVED event
type (as expected) but does not handle the remaining three
host event types. If mobility is expected by other apps to
be responsible for cleaning up flow rules, then a host whose
information has been updated (where updating would trigger
a HOST UPDATED event type), would not cause a flow
removal and might lead to stale flow rules. If there is sufficient
time between a moved host’s removal from and addition back
into the network, it may trigger a HOST REMOVED event
followed by a HOST ADDED event. As mobility does not
handle either event type, the expected flow removal by mobility
would not occur.

Vulnerability 9 (vtn): The virtual tenant network app,
vtn, provisions virtual networks as overlays over physical
networks [50]. The app handles all of the host event types
except for HOST MOVED. For the host event types that

12

are handled, the app installs flow rules for added hosts
(i.e., HOST ADDED), removes flow rules for removed
hosts (i.e., HOST REMOVED), and installs and removes
flow rules for any host that has changed its properties but
not moved (i.e., HOST UPDATED). A host that moves
(i.e., HOST MOVED) would not have any actions taken by
the app; as a result, flow rules would not be reinstalled, and
denial of service could occur.

Vulnerabilities 10–11 (evpnopenflow): The Ethernet
VPN app, evpnopenflow, uses OpenFlow to install MPLS-
labeled overlay routes for virtual private networks [47]. The
app’s host event listener handles the HOST ADDED and
HOST REMOVED event types, which call functions that
are responsible for finding routable paths, installing flow
rules, and removing flow rules. The app does not han-
dle hosts moving (i.e., HOST MOVED) or being updated
(i.e., HOST UPDATED), and that could cause denial of
service to such hosts if old flow rules are not removed and
new flow rules are installed.

Vulnerabilities 12–14 (p4tutorial): The P4 tutorial app,
p4tutorial, is a proof-of-concept app that demonstrates P4’s
programmable data plane capabilities. The app’s host event
listener handles the HOST ADDED event type only. Like
virtualbng, p4tutorial’s lack of handling of other host event
types leaves it susceptible to denial-of-service vulnerabilities
and failure to remove flow rules.

VIII. DISCUSSION

A. SDN Design Concerns

1) App composability: We found that some apps, which we
term “helper apps,” were designed to perform functionality
on behalf of other apps currently running. One helper app,
mobility, removes flow rules when hosts move within the
network. However, as we noted with respect to our exploit in
Section VII-B, if an app’s design does not account for helper
apps that are taking actions on its behalf, then the combination
of apps may introduce vulnerabilities that arise from a lack of
coordinated responsibility. That suggests a need for stronger
integration testing among apps; EVENTSCOPE is useful in
identifying the subsets of apps that may interact.

2) Update semantics: We found that ONOS event kinds
often had representations in their event types for updates
(i.e., * UPDATED, * CHANGED, or * MOVED). While
some apps handled the respective “addition” or “removal”
event types, they did not handle the respective “updated”
event type (e.g., the odtn app for LINK UPDATED). Apps
that did handle update event types often did so by first
calling a removal method, followed by an addition method; for
instance, the vtn app handles HOST UPDATED by calling its
onHostVanished() and onHostDetected() methods
consecutively. The lack of uniform update event-type handling
across apps suggests that update handling is a useful place to
identify vulnerabilities.

3) Host migration: Although host migration hijacking is a
known problem [14], [22], [57], [26], we found that ONOS
v1.14.0 and earlier versions do not provide any protections
against the broader class of adversarial host-generated data
plane input. That suggests a strong cross-plane attack vector,

and EVENTSCOPE’s event flow graph can show the extent to
which the control plane’s control flow can be altered.

4) Event abstraction: While EVENTSCOPE’s discovered
vulnerabilities do relate to host movement, such vulnerabilities
differ from the host migration vulnerabilities discovered in
related work [14], [22], [57], [26]. Those previously known
vulnerabilities specifically use incoming data plane packets to
target the host migration service. In contrast, EVENTSCOPE’s
discovered vulnerabilities occur one abstraction layer higher:
the host migration service declares that a host has moved,
and other apps attempt to update their own states to account
for such movement. EVENTSCOPE’s discovered vulnerabili-
ties could occur as a result of benign host migration. For
example, the acl app relies on a host migration service event
(i.e., HostEvent) instead of relying directly on data plane
packets because the semantic notion of host migration is a
useful abstraction for other apps, too. We believe that future
apps will likely follow a similar trend of using abstracted
events. One of our goals is to make event propagation more
understandable for practitioners and developers. In that con-
text, we believe that EVENTSCOPE’s discovered vulnerabilities
are distinct from and complementary to the host migration
vulnerabilities found in related work.

5) Other controllers: Much like ONOS’s packet processor,
Floodlight’s [17] processing chains allow for specific execution
ordering. ONOS contains a more sophisticated, extensive, and
distributed event-driven architecture than Floodlight, and we
opted to evaluate the more sophisticated architecture. ONOS
also contains event processing that does not specify ordering,
which is the case for the majority of ONOS event kinds
(i.e., all non-packet events). Although the event flow graph
captures the ordering of different events (e.g., a packet event
that subsequently triggers a host event), the graph does not
capture the processing order within an event (e.g., the packet
event goes to app X, then app Y).

B. Limitations

EVENTSCOPE cannot establish the absence of vulnera-
bilities. NICE [11] shows that a large state space search is
needed to reason about the absence of vulnerabilities, but
such state does not scale beyond simple apps and controllers.
EVENTSCOPE lets developers and practitioners understand
complex app interactions using a scalable approach.

To help practitioners identify unsafe operating conditions,
EVENTSCOPE can generate contexts under which certain
combinations of apps may manifest a vulnerability; however,
EVENTSCOPE does not generate exploits. Automated exploit
generation [3] is an ongoing research area, and we consider
automated SDN exploit generation to be future work.

We believe that the event flow graph data structure has
applicability beyond the identification of missing event vul-
nerabilities. For instance, concurrent event processing can be
represented in an event flow graph by two paths with the same
start and end nodes. Such path structures may indicate race
conditions, and the event flow graph could be well-suited to
identifying where these occur. However, we believe that that,
and other possible applications, are complex research questions
in their own right, and we leave them as future work.

13

IX. RELATED WORK

SDN security: Cross-plane attacks have been studied in
specific contexts. Yoon et al. [70] refer to these attacks as
control plane remote attacks for network-view manipulation.
SPHINX [14], TOPOGUARD [22], TOPOGUARD+ [57], and
SECUREBINDER [26] reveal the lack of protection against link
fabrication attacks and host location hijacking. However, none
of the four systems analyze the extent to which the untrusted
data plane inputs propagate via events to other components in
the controller, and such analysis is necessary for cases where
apps’ competing behaviors create vulnerabilities.

CONGUARD [66] identifies time-of-check-to-time-of-use
race conditions in SDN controllers and provides a generalized
model of control plane happens-before relations, but the gen-
eralized semantics do not account for more sophisticated app
semantics whose incomplete event handling can be exploited.

INDAGO [32] and SHIELD [33] use static analysis to
analyze SDN apps and summarize their API use. INDAGO
proposes machine learning techniques to determine whether
an app is malicious or benign based on its sources and
sinks from API call use. Given that benign apps can be co-
opted by other apps as confused deputies [59], we find the
distinction of malicious and benign labeling to be irrelevant for
EVENTSCOPE. Instead, EVENTSCOPE approaches the problem
from a global event dependency view.

Event-driven architectures: We consider the SDN archi-
tecture vis-à-vis Android and Web browser extensions. SDN
and Android differ based on the mechanisms by which data
are passed and on how apps coordinate with each other [59].
Event-driven SDN relies on a central event dispatching mech-
anism over a limited set of network events, which implies that
SDN apps must coordinate with each other to apply policies
to and to enforce security over the shared data plane resource.
Vulnerability tools and analyses for Android [2], [15], [35],
[38], [54], [73], [72], [69] and browser extensions [5], [6],
[12], [36] have focused primarily on preventing information
leakage among apps or extensions rather than specifically on
how unhandled events affect global control flow.

Vulnerability discovery: Livshits and Lam [37] secure Java
programs from unchecked Web-based input vulnerabilities. We
study the analogous SDN problem of untrusted data plane
input and model our attacks using a two-stage model of initial
injection and subsequent manipulation. Yang et al. [68] note
the challenges for event-driven callbacks in Android, which
we consider in our SDN component model. Monperrus and
Mezini [41] study the use of missing method calls as indicators
of deviant code, using an approach similar to that used for
the unhandled event type problem. CHEX [38] identifies entry
points in Android applications and uses “app splitting” to
identify all code that is reachable from a given entry point.
We adapted CHEX’s notion of app splitting for use in building
event flow graphs. Code property graphs [67] combine abstract
syntax trees, control flow graphs, and program dependence
graphs into a unified data structure for automated vulnerability
discovery, but have scalability concerns.

Network debugging: Cross-plane and cross-app attacks can
be tracked using causality tracking and data provenance ap-
proaches. PROVSDN [59] prevents cross-app poisoning attacks
in real time using a provenance graph structure to enforce

information flow control, and FORENGUARD [62] records
previous causal relationships to identify root causes. Negative
provenance [65], differential provenance [13], and meta prove-
nance [64] have been proposed to explain why SDN routing
events did not occur and to propose bug fixes, but such methods
require either a history of traces or reference examples of
“good” behavior; furthermore, analysis of SDN applications in
those systems must be written in or translated into the Datalog
language NDlog prior to analysis. The aforementioned systems
record code paths that were taken rather than all potential code
paths, which limits their effectiveness in identifying potential
vulnerabilities ahead of time.

DELTA [34], BEADS [25], and STS [55] use fuzzing to
generate data plane inputs, but the space of potential inputs
is complex for large and complex event-driven controllers.
NICE [11] models basic control plane semantics (e.g., flow
rule installation ordering) and uses the generated state space
to perform concrete symbolic (i.e., concolic) execution to find
bugs; however, even for simple single apps, the approach
does not scale well. VeriFlow [29] uses network correctness
properties to prevent flow rules from being installed. However,
such approaches require a formal statement about app behavior.
Given that the checks occur in the southbound API, such tools
do not identify the sources of vulnerabilities.

X. CONCLUSION

We have presented EVENTSCOPE, a vulnerability discov-
ery tool for SDN that enables practitioners and developers to
identify cross-plane event-based vulnerabilities by automati-
cally analyzing controller apps’ event use. EVENTSCOPE uses
similarities among apps to find potential logic bugs where
event types are not handled by apps. EVENTSCOPE uses
an event flow graph, which abstracts relevant information
about how events flow within the control plane, captures
data-plane inputs as potential cross-plane attack vectors, and
captures data-plane outputs as targets. We used EVENTSCOPE
on ONOS to find and validate 14 new vulnerabilities.

ACKNOWLEDGMENT

The authors thank our shepherd, Qi Li, and the anonymous
reviewers for their helpful comments, which improved this pa-
per; the PERFORM and STS research groups at the University
of Illinois for their advice and feedback; and Jenny Applequist
for her editorial assistance. This material is based upon work
supported by the National Science Foundation under Grant
Nos. CNS-1657534 and CNS-1750024.

REFERENCES

[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in ACM SIGPLAN Notices, vol. 49, no. 1. ACM, 2014, pp.
113–126.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of ACM PLDI ’14, 2014.

[3] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic exploit generation,” in Proceedings of NDSS ’11, Feb. 2011.

[4] A. Azzouni, O. Braham, T. M. T. Nguyen, G. Pujolle, and R. Boutaba,
“Fingerprinting OpenFlow controllers: The first step to attack an SDN
control plane,” in 2016 IEEE Global Communications Conference
(GLOBECOM), Dec 2016, pp. 1–6.

14

[5] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “VEX:
Vetting browser extensions for security vulnerabilities,” in Proceedings
of USENIX Security ’10, 2010.

[6] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers
from extension vulnerabilities,” in Proceedings of NDSS ’10, 2010.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” in Proceedings of
ACM HotSDN ’14, 2014.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of
code later: Using static analysis to find bugs in the real world,” Commun.
ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[9] P. Biondi. (2019) Scapy: Packet crafting for python2 and python3.
[Online]. Available: https://scapy.net/

[10] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and custom
class loaders,” in Proceedings of ACM ICSE ’11, 2011.

[11] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE
way to test openflow applications,” in Proceedings of USENIX NSDI
’12, 2012.

[12] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the Google
Chrome extension security architecture,” in Proceedings of USENIX
Security ’12, 2012.

[13] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good,
the bad, and the differences: Better network diagnostics with differential
provenance,” in Proceedings of ACM SIGCOMM ’16, 2016.

[14] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in Proceedings of NDSS
’15. Internet Society, Feb. 2015.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proceedings of
USENIX OSDI ’10, 2010.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program depen-
dence graph and its use in optimization,” ACM Trans. Program. Lang.
Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[17] Floodlight, 2019. [Online]. Available: http://www.projectfloodlight.org/
[18] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and

D. Walker, “Frenetic: A high-level language for OpenFlow networks,”
in Proceedings of ACM PRESTO ’10, 2010.

[19] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, Jul. 1987.

[20] R. Hanmer, S. Liu, L. Jagadeesan, and M. R. Rahman, “Death by
babble: Security and fault tolerance of distributed consensus in high-
availability softwarized networks,” in Proceedings of IEEE NetSoft ’19,
June 2019, pp. 266–270.

[21] Hewlett Packard Enterprise, 2019. [Online]. Avail-
able: https://techlibrary.hpe.com/si/en/networking/solutions/technology/
sdn/portfolio.aspx/

[22] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures,” in
Proceedings of NDSS ’15, Feb. 2015.

[23] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not
too many,” in Proceedings of ACM PASTE ’07, 2007.

[24] G. Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proceedings of ACM KDD ’02, 2002.

[25] S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, and S. Fahmy,
“BEADS: automated attack discovery in OpenFlow-based SDN sys-
tems,” in Proceedings of RAID ’17, 2017.

[26] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-defined
networks,” in Proceedings of USENIX Security ’17, 2017.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of ICSE ’13, 2013.

[28] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 1990.

[29] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[30] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of ACM
HotNets ’10, 2010.

[32] C. Lee, C. Yoon, S. Shin, and S. K. Cha, “INDAGO: A new framework
for detecting malicious SDN applications,” in Proceedings of IEEE
ICNP ’18, Sep. 2018.

[33] C. Lee and S. Shin, “SHIELD: An automated framework for static
analysis of SDN applications,” in Proceedings of ACM SDN-NFV
Security ’16, 2016.

[34] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras,
“DELTA: A security assessment framework for software-defined net-
works,” in Proceedings of NDSS ’17, Feb. 2017.

[35] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in Android apps,” in Proceedings of ICSE
’15, 2015.

[36] L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome extensions: Threat
analysis and countermeasures,” in Proceedings of NDSS ’12, 2012.

[37] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in Proceedings of USENIX Security
’05, 2005.

[38] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proceedings
of ACM CCS ’12, 2012.

[39] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[40] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking
semantic correctness: The case of finding file system bugs,” in Pro-
ceedings of ACM SOSP ’15, 2015.

[41] M. Monperrus and M. Mezini, “Detecting missing method calls as
violations of the majority rule,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 1, pp. 7:1–7:25, Mar. 2013.

[42] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in ACM
SIGPLAN Notices, vol. 47, no. 1. ACM, 2012, pp. 217–230.

[43] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al.,
“Composing software defined networks,” in Proceedings of NSDI ’13,
2013.

[44] B. Naveh. (2019) Jgrapht. [Online]. Available: https://jgrapht.org/
[45] Open Networking Foundation, “In action - ONOS.” [Online]. Available:

https://www.onosproject.org/in-action/
[46] ——. (2019) Github – opennetworkinglab/onos at 1.14.0. [Online].

Available: https://github.com/opennetworkinglab/onos/tree/onos-1.14
[47] ——. (2019) Overlay VPNs and Gluon. [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Overlay+VPNs+and+Gluon
[48] ——. (2019) System components – ONOS. [Online]. Available:

https://wiki.onosproject.org/display/ONOS/System+Components
[49] ——. (2019) Virtual BNG. [Online]. Available: https://wiki.onosproject.

org/display/ONOS/Virtual+BNG
[50] ——. (2019) Virtual network subsystem. [Online].

Available: https://wiki.onosproject.org/download/attachments/6357849/
VirtualNetworkSubsystem.pdf

[51] OpenDaylight. (2019) Home - opendaylight. [Online]. Available:
https://www.opendaylight.org/

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, Nov. 2011.

15

[53] PMD. (2019) PMD: An extensible cross-language static code analyzer.
[Online]. Available: https://pmd.github.io/

[54] C. Qian, X. Luo, Y. Le, and G. Gu, “VulHunter: Toward discovering
vulnerabilities in Android applications,” IEEE Micro, vol. 35, no. 1, pp.
44–53, Jan 2015.

[55] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya, K. Zarifis, and
S. Shenker, “Troubleshooting blackbox SDN control software with
minimal causal sequences,” in Proceedings of ACM SIGCOMM ’14,
2014.

[56] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (state of) the art of war: Offensive techniques in binary analysis,”
in Proceedings of IEEE S&P ’16, May 2016, pp. 138–157.

[57] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi,
and J. Landry, “Effective topology tampering attacks and defenses in
software-defined networks,” in Proceedings of IEEE/IFIP DSN ’18,
June 2018, pp. 374–385.

[58] J. Toman and D. Grossman, “Taming the static analysis beast,” in
Proceedings of SNAPL ’17, ser. LIPIcs, B. S. Lerner, R. Bodı́k, and
S. Krishnamurthi, Eds., vol. 71. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017, pp. 18:1–18:14.

[59] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-app
poisoning in software-defined networking,” in Proceedings of ACM CCS
’18, 2018.

[60] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san, “Soot: A Java bytecode optimization framework,” in Proceedings
of CASCON ’10, 2010.

[61] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proceedings of ACM HotSDN ’12,
2012, pp. 43–48.

[62] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
“Towards fine-grained network security forensics and diagnosis in the
SDN era,” in Proceedings of ACM CCS ’18, 2018.

[63] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Improv-
ing integer security for systems with KINT,” in Proceedings of USENIX
OSDI’12, 2012.

[64] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
bug removal for software-defined networks,” in Proceedings of USENIX
NSDI ’17, Mar. 2017.

[65] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing
missing events in distributed systems with negative provenance,” in
Proceedings of ACM SIGCOMM ’14, 2014.

[66] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the SDN control plane,” in Proceedings of USENIX Security
’17, 2017.

[67] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings
of IEEE S&P ’14, 2014.

[68] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-
flow analysis of user-driven callbacks in Android applications,” in
Proceedings of ICSE ’15, 2015.

[69] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppCon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in Proceedings of ICSE ’15, 2015.

[70] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017.

[71] M. Zhang, J. Hou, Z. Zhang, W. Shi, B. Qin, and B. Liang, “Fine-
grained fingerprinting threats to software-defined networks,” in Proceed-
ings of IEEE Trustcom/BigDataSE/ICESS ’17, Aug 2017, pp. 128–135.

[72] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual API dependency
graphs,” in Proceedings of ACM CCS ’14, 2014.

[73] M. Zhang and H. Yin, “AppSealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking at-
tacks in Android applications,” in Proceedings of NDSS ’14, 2014.

1 package org.onosproject.sampleApp;
2 public class SampleAppManager {
3 /* Internal variables */
4 protected HostService hostService;
5 protected PacketService packetService;
6 protected FlowRuleService flowRuleService;
7 private HostListener hostListener = new HL();
8 private PacketProcessor processor = new PP();
9 /* Activation and deactivation methods */

10 protected void activate() {
11 ...
12 hostService.addListener(hostListener);
13 packetService.addProcessor(processor, 0);
14 }
15 protected void deactivate() {
16 ...
17 packetService.removeProcessor(processor);
18 hostService.removeListener(hostListener);
19 }
20 /* Event listener(s) */
21 private class HL implements HostListener {
22 public void event(HostEvent event) {
23 switch (event.type()) {
24 case HOST_ADDED:
25 internalMethod1(event,...);
26 default:
27 }
28 }
29 }
30 /* Packet processor(s) */
31 private class PP implements PacketProcessor {
32 public void process(PacketContext context) {
33 ...
34 internalMethod2(...)
35 }
36 }
37 /* App internal methods (public or private) */
38 private void internalMethod1(Event event,...) {
39 ...
40 internalMethod2(...)
41 }
42 public void internalMethod2(...) {
43 ...
44 flowRuleService.applyFlowRules(...);
45 }
46 }

Fig. 10: Abbreviated code structure of an example ONOS
network application, sampleApp, written in Java.

APPENDIX

A. ONOS Application Structure

1) App Components: We provide an example ONOS app
with representative components. Figure 10 shows the represen-
tative code structure of an example application, sampleApp.
sampleApp listens for host events and incoming data plane
packets; based on such events, the app installs new flow rules.
We highlight the key components of an ONOS app below.

• Internal variables (lines 3–8): Internal variables
maintain the app’s state, which includes references
to data store objects and core controller services. In
sampleApp, references to the host, packet, and flow
rule services are created, along with the instantiations
of the host (event) listener and the packet processor.

• Activation and deactivation methods (lines 9–19):
The activation method is called once when the app is
activated; similarly, the deactivation method is called
once during deactivation. During activation and deac-
tivation, the app registers and deregisters components
that it needs, such as event listeners and packet pro-

16

provider.netcfglinks
NetworkConfigLinksProvider

InternalConfigListener

LinkProviderService
linkVanished(…)

provider.netcfglinks
NetworkConfigLinksProvider

InternalPacketProcessor

PacketContext
block(…)

LinkProviderService
linkDetected(…)

provider.netcfglinks
NetworkConfigLinksProvider

InternalDeviceListener

PacketService
emit(…)

LinkProviderService
linksVanished(…)

LinkProviderService
linksVanished(…)

provider.netcfghost
NetworkConfigHostProvider

InternalNetworkConfigListener

HostProviderService
hostDetected(…)

HostProviderService
hostVanished(…)

provider.lldp.impl
LldpLinkProvider

InternalDeviceListener

provider.lldp.impl
LldpLinkProvider

InternalPacketProcessor

provider.lldp.impl
LldpLinkProvider

InternalConfigListener

provider.general.device.impl
GeneralDeviceProvider
InternalDeviceListener

DeviceProviderService
updatePortStatistics(…)

provider.general.device.impl
GeneralDeviceProvider

InternalNetworkConfigListener

DeviceProviderService
deviceConnected(…)

DeviceProviderService
updatePorts(…)

provider.general.device.impl
GeneralDeviceProvider

InternalDeviceAgentListener

DeviceProviderService
deviceDisconnected(…)

DeviceProviderService
receivedRoleReply(…)

provider.netconf.device.impl
NetconfDeviceProvider
InternalDeviceListener

provider.netconf.device.impl
NetconfDeviceProvider

InternalNetworkConfigListener

provider.host.impl
HostLocationProvider
InternalDeviceListener

HostProviderService
removeLocationFromHost(…)

provider.host.impl
HostLocationProvider
InternalHostProvider

provider.host.impl
HostLocationProvider
InternalConfigListener

provider.linkdiscovery.impl
LinkDiscoveryProvider
InternalDeviceListener

acl.impl
AclManager

InternalHostListener

FlowRuleService
applyFlowRules(…)

fwd
ReactiveForwarding

ReactivePacketProcessor FlowObjectiveService
forward(…)

PacketContext
send(…)

fwd
ReactiveForwarding

InternalTopologyListener

FlowRuleService
removeFlowRules(…)

dhcp.impl
DhcpManager

DhcpPacketProcessor HostProviderService
removeIpFromHost(…) dhcprelay

Dhcp6HandlerImpl
InternalHostListener

PacketService
cancelPackets(…)

PacketService
requestPackets(…)

dhcprelay
DhcpRelayManager

InternalConfigListener

FlowObjectiveService
apply(…)

HostService
startMonitoringIp(…)

HostService
stopMonitoringIp(…)

dhcprelay
DhcpRelayManager

DhcpRelayPacketProcessor

dhcprelay
DhcpRelayManager

InternalDeviceListener

dhcprelay
Dhcp4HandlerImpl

InternalHostListener

mobility
HostMobility

InternalHostListener

net.flow.impl
FlowRuleDriverProvider
InternalDeviceListener

FlowRuleProviderService
pushFlowMetrics(…)

net.flow.impl
FlowRuleManager

InternalDeviceListener

net.intent.impl
IntentCleanup

IntentService
submit(…)

IntentService
withdraw(…)

net.intent.impl
ProtectionConfigMonitor
ProtectionConfigListener

DriverService
createHandler(…)

net.intent.impl
ObjectiveTracker

InternalHostListener

net.intent.impl
ObjectiveTracker

InternalDeviceListener

net.statistic.impl
StatisticManager

InternalFlowRuleListener

net.flowobjective.impl
FlowObjectiveManager

InnerDeviceListener

net.flowobjective.impl
FlowObjectiveManager

InnerDriverListener

net.flowobjective.impl.composition
FlowObjectiveCompositionManager

InnerDeviceListener

net.resource.impl
ResourceNetworkConfigListener

net.resource.impl
ResourceDeviceListener

net.topology.impl
DefaultTopologyProvider

InternalLinkListener

net.topology.impl
DefaultTopologyProvider
InternalDeviceListener

net.device.impl
DeviceManager

InternalNetworkConfigListener

net.group.impl
GroupDriverProvider

InternalDeviceListener

net.group.impl
GroupManager

InternalDeviceListener

net.link.impl
LinkManager

InternalDeviceListener

net.edgeservice.impl
EdgeManager

InnerDeviceListener

net.meter.impl
MeterDriverProvider

InternalDeviceListener

net.packet.impl
PacketManager

InternalDeviceListener

store.flow.impl
ECFlowRuleStore
InternalFlowTable

net.region.impl
RegionManager

InternalNetworkConfigListener

net.neighbour.impl
NeighbourResolutionManager

InternalPacketProcessor

GroupProviderService
pushGroupMetrics(…)

net.edgeservice.impl
EdgeManager

InnerLinkListenernet.link.impl
LinkManager

InternalNetworkConfigListener

MeterProviderService
pushMeterMetrics(…)

net.config.impl
DeviceInjectionConfigMonitor

InternalConfigListener

net.config.impl
NetworkConfigLoader
InnerConfigListener

NetworkConfigService
applyConfig(…)

net.host.impl
HostManager

InternalNetworkConfigListener

NetworkConfigService
getConfig(…)

DriverService
getDriver(…)

DeviceService
isAvailable(…)

Data Plane
Out

DeviceService
getDevice(…)

NetworkConfigService
getConfigClass(…)

NetworkConfigService
getSubjectFactory(…)

DeviceService
getPorts(…)

DeviceService
getPort(…)

LinkService
getLinks(…)

DeviceService
getRole(…)

PacketContext
isHandled(…)

PacketContext
inPacket(…) DeviceService

getPort(…)

DeviceService
getDevices(…)

FlowRuleService
getFlowEntries(…)

DeviceService
getAvailableDevices(…)

InterfaceService
getInterfacesByPort(…)

HostService
getHost(…)

HostService
getHostsByIp(…)

InterfaceService
getMatchingInterfaces(…)

EdgePortService
isEdgePoint(…)

HostService
getConnectedHosts(…)

HostService
getConnectedHosts(…)

Data Plane
In

Fig. 11: Event flow graph of ONOS with core service components and several apps (i.e., acl, fwd, mobility, dhcp, and dhcprelay).
Blue rectangles represent event listeners and packet processors, gray ellipses represent API methods, bold edges represent event
dispatches, and dashed edges represent API calls. (For simplicity, event types are reduced to a single edge of the event type’s
respective event kind.)

17

cessors. In sampleApp, the host event listener and
packet processor are registered and deregistered.

• Event listeners (lines 20–29): Event listeners listen
for an event kind of interest and take further action,
often based on the event type. Event listeners may call
other methods within the app to perform a desired
functionality. In sampleApp, the host event listener
executes event() when it receives a HostEvent
(line 22). It handles the HOST ADDED type by
calling the internal method internalMethod1()
(line 25). Note that all other HostEvent event types
(e.g., HOST REMOVED) are not handled.

• Packet processors (lines 30–37): Packet processors
function much like to event listeners by listening for
incoming data plane packets and taking appropriate
actions. In sampleApp, the packet processor executes
process() when it receives a packet (line 32) and
subsequently after execution calls the internal method
internalMethod2() (line 34).

• App internal methods (lines 38–45): App
internal methods handle the main functionality
of the app. They may read from core services
(i.e., API read calls), write to core services
(i.e., API write calls), or dispatch new events.
In sampleApp, internalMethod1() calls
internalMethod2(). New flow rules
are generated as a result of the calling of
internalMethod2() (line 44).

2) App Analysis: We explain how sampleApp would be
analyzed within EVENTSCOPE.

a) Event use: Based on the event listener that is
implemented in sampleApp, we see that the HostEvent
event is handled. For simplicity, EK = {HostEvent} and
ET = {HOST ADDED,HOST REMOVED,
HOST MOVED,HOST UPDATED}. Because sampleApp
handles only the HOST ADDED event type, its corresponding
row in the event use matrix, M , would be M [sampleApp] =
[true,false,false,false]. Next, sampleApp’s event
types would be compared with respect to all other apps to
determine if the 3 remaining event types are candidates.

b) Event flow: Given that apps’ event listeners
and packet processors drive the main app functionality,
EVENTSCOPE focuses on these methods and ignores the
activation and deactivation methods. We mark the host event
listener event() method (line 23) and the packet pro-
cessor process() method (line 32) as entry points for
the event flow graph generation. Each entry point is rep-
resented as a node in the event flow graph, G. We note
that flowRuleService.applyFlowRules() is an API
write method, so it would also be marked as an entry point.

For the host event listener, the resulting call graph con-
tains the path event() → internalMethod1() →
internalMethod2() → applyFlowRules(), so we
add an outgoing edge from the host event listener node to
the flow rule API call node in G. For the packet processor,
the resulting call graph contains the path process() →
internalMethod2() → applyFlowRules(), so we
add a similar edge from the packet processor node to the flow

0.5 0.6 0.7 0.8 0.9 1.0
Clustering Threshold

0
25
50
75

100
125
150
175

Nu
m

be
r o

f R
es

ul
ts

Candidate vulnerabilities
Valid vulnerabilities

Fig. 12: ONOS apps’ candidate and valid vulnerabilities as a
function of clustering threshold τ (using SimRank [24]).

rule API call node. As the host event listener handles only 1
event type, we add 1 edge from each host event dispatcher
node (assumed to have been dispatched from other activated
controller code) to sampleApp’s host event listener in G.

Finally, as the packet processor receives incoming data
plane input, we add an edge from DPIn to the packet processor
in G. As the host event listener and packet processor add flow
rules, we add edges from each to DPOut in G.

B. ONOS Event Flow Graph Example

Figure 11 shows the ONOS event flow graph with the con-
troller’s core services, the access control app (acl), the reactive
forwarding app (fwd), the host mobility app (mobility), and the
DHCP apps (dhcp and dhcprelay).

We start from the Data Plane In node on the left
side of the figure, where the inPacket() API read call
receives incoming data plane packets. Such packets are read
by several packet processors: the neighborhood service’s In-
ternalPacketProcessor, the reactive forwarding app’s Re-
activePacketProcessor, the LLDP link provider’s Internal-
PacketProcessor, the DHCP apps’ DhcpPacket Proces-
sor and DhcpRelayPacketProcessor, and the host location
provider’s InternalHostProvider.

We follow paths from left to right to understand how
those packet processors cause subsequent API calls and
event dispatches. For instance, the dhcprelay app calls the
HostProviderService’s hostDetected() API call. The
hostDetected() API call will dispatch a HostEvent event
that gets received by the dhcprelay app’s InternalHostLis-
tener event listener. That event listener calls the Packet-
Service’s cancelPackets() API call, which subsequently
calls the FlowObjective Service’s forward() API call. The
forward() API call causes a data plane effect.

C. Number of Clusters and Detection Rate

Figure 12 shows the effect of choosing different values
for the event use clustering threshold τ (i.e., changing the
number of clusters) on the detection rate for the number of can-
didate vulnerabilities (Section IV-A) and valid vulnerabilities
(Section V-B) for ONOS v1.14.0 [46]. We note an inflection
point of candidate vulnerabilities near τ = 0.90, which is the
threshold that we used throughout our evaluation.

18

