
1

One Giant Leap for Computer Security
Hamed Okhravi, Nathan Burow, Richard Skowyra, Bryan Ward, Samuel Jero, Roger Khazan, and Howard Shrobe

Abstract—Today’s computer systems trace their roots to an era
of trusted users and highly constrained hardware. Consequently,
their design’s fundamentally emphasize performance and dis-
count security. The seemingly endless war in memory between
attackers and defenders, and its collateral damage to users in the
form of data breaches, ransomeware, and other malware infecting
systems, will continue to rage until we adopt a fundamentally
new system architecture that emphasizes security as a first class
citizen, and not just performance. The research community has
already developed many of the advanced technologies required
create such a secure and performant system architecture. Here,
we present a vision for how tomorrow’s technologies can co-
operate across all layers of modern systems — from hardware
through the operating system to user applications — in order to
enable performant systems that are immune to the underlying
causes of today’s exploits. Put another way, we show how the
small steps towards security represented by existing technologies
can be combined into one giant leap for the security of computer
systems. We are not so naı̈ve as to think that this will stop all
cyber attacks, however it can dramatically shift the landscape in
the defender’s favor. In order to jump-start the shift to secure-
by-design systems, we highlight both foundational technologies
for such systems that require further research, and the research
challenges in composing existing security technologies to create
a secure and performant system architectures.

I. INTRODUCTION

Computer security currently consists of bringing order out
of an infinite sea of raw seething bits [1], a Sisyphean task that
is doomed to failure without a fundamental shift in the way
we approach security. The current state of security is rooted
in legacy design decisions in computer architecture, operating
systems, and programming languages that have continued
largely unchallenged in commodity systems since ~1970, a
fact which is particularly ironic in light of the rapid pace of
innovation in early systems such as Project MAC in 1963,
Multics circa 1969, and PDP-11 in 1970. While these and
other systems contributed many novel design ideas that we
rely upon today, e.g., time-sharing, virtual memory, dynamic
linking, and hierarchical file systems, they were also built
in a different era; an era when networking was just coming
into existence and all users were trusted researchers. With
security threats not yet on the horizon and a trusted user base,
system designers emphasized performance to maximize the
computation possible on the highly constrained processors and
memory of the day.

As a direct consequence of the paramount importance of
performance in early systems, certain design decisions were

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

made that directly result in security vulnerabilities today.
Processors manipulate raw bits without any metadata about the
objects they represent, and lack any core security features other
than virtual memory, which was originally added to mask lim-
itations in the memory available to processes. Consequently,
there is no concept of a buffer overflow at the Instruction
Set Architecture (ISA) level, such semantics are imposed by
programmers and are not fundamental to the machine. All
bits are the same to the processor, whether they represent
code, data, or pointers to the programmer. Operating Systems
(OS) remain monolithic, with no isolation or separation of
privileges within the OS. Indeed, privilege separation is only
possible through the hierarchical ring-oriented privilege model
which results in over-privileged code in the ring-0 OS. Today’s
systems programming languages, C and C++, came of age
in an era when compilers were rudimentary, and deliberately
provide only minor abstractions over assembly code. As a
result, they provide little static verification, and have no
runtime system to verify security properties. Indeed, these
languages are notorious for leaving responsibility for security
solely to the (highly error prone) programmer.

The combination of processors that are only aware of
raw bits, over-privileged monolithic OSs, and simplistic, low
abstraction programming languages has created highly vul-
nerable systems that are prone to exploitation. The past 25
years have seen an arms race between attackers punching
new holes in software and defenders desperately plugging
these holes. Indeed, the vicious cycle of conflict between
attackers and defenders in system’s memory has been termed
an “Eternal War” [2]. While principled solutions to many of
the fundamental flaws in modern systems are known, realizing
these solutions in practice has to-date proven impractical.
The time has come to end the eternal war in memory by
embracing a new systems architecture where security is a
first class citizen alongside performance, with the processor,
operating system, and programming languages all cooperating
to guarantee security.

In this article, we present a vision for a more secure
computer design. Coming from multiple past and on-going
projects in our research team, this vision outlines what a
computer system design would look like if we were not
bound and constrained by legacy decisions. In other words,
we try to imagine a computer system with security as its
core design principle, and uninhibited by compatibility or
optimality constraints. While some previous efforts such as
DARPA’s CRASH and MRC projects were pioneers in clean-
slate redesign of a computer system, due to their constraints,
they still heavily rely on existing system components with
legacy designs (e.g., UNIX-like operating systems and C/C++
languages). Here, we envision the next natural step and think
beyond legacy designs — envisioning instead a moonshot that



2

Zero-Kernel 

OS

User Space

Library

Application

Tagged Processor ARM RISC-V

Interconnect EthernetUART

Library

Application

OS 

Module

OS 

Module
OS 

Module

Memory 

Safety

Least 

Privilege

Isolation 

Boundary

Language-Based

Security

I/O

Validation

1

2

3

S
e

m
a

n
ti

c
 I
n

fo
rm

a
ti

o
n

 F
lo

w
Isolation Boundary

Fig. 1: Proposed secure-by-design architecture.

results in the next giant leap for computer security. The key
to our approach is focusing holistically on the entire software
stack, instead of on the small steps that can be taken to secure
individual software layers.

We envision a future where security is fundamental to
computer design, instead of being imposed from above on
top of an unstable foundation of raw bits. We identify three
key pillars of computer security that should be inherent to the
architecture of any secure system, and which cut across all
layers of the system design: (i) safety within code modules,
i.e., language based safety; (ii) safety between code modules,
i.e., I/O Validation; and (iii) isolation of code modules, i.e.,
least privileges for each code module. Figure 1 illustrates
such a secure architecture, and highlights our cross-cutting
design principles. Language based security applies to all code
modules, be they applications, libraries, or OS modules. I/O
validation occurs anytime data crosses a logical boundary in
the system, either from the OS to an application as at Figure 1
Label 1, or hardware to the OS as at Label 2. Least privilege
is achieved by isolating both applications from each other,
and functionality within the OS as seen at Label 3 (dotted
lines denote isolation boundaries). As shown in Figure 1 these
pillars are all enabled by semantically aware processors that
are aware of more than raw bits.

• Language Based Security. The fundamental properties
of language based security are memory/type safety, which
at a high level require that memory only be used as
the programmer intended. Memory/Type safety violations
arise out of the semantic gap between existing ISAs,
which regard bits as bits, and programming languages
which organize memory in terms of typed objects. Re-
search in this area has focused on creating safe languages,
with Rust and Go being too prominent examples that

are in widespread use. section III discusses the features
of these languages, and challenges in their design and
implementation.

• I/O Validation. Bits of information within a system can
be generated programmatically, or enter from external
sources such as user input or networking. While Mem-
ory/Type safety handles the first case, I/O validation is
required to ensure that bits from external sources are
correctly typed and have valid bounds. Further, I/O is
the traditional entry point for attackers, and so is a
natural location for additional defenses. We imagine new
defenses at the system boundary that will help prevent
attacks like Heartbleed, which exploited a failure of the
system to accurately track bounds for a buffer passed
over the network. Further, as discussed in section IV,
semantically aware hardware can solve I/O validation for
all communication within the system, most notably IPC.

• Least Privileges. Isolating code modules, i.e., reducing
each to its set of least privileges to accomplish its job, is
fundamental to providing compartmentalization for com-
puter systems. By isolating components, a compromise of
any given component does not compromise the system
as a whole. Further, isolation allows us to enforce that
each component has access to the minimum possible
set of resources for its function, i.e., Least Privileges.
Current systems only provide isolation at the process
level through virtual memory. Further, commodity OSs
and even research micro-kernels are built on top of a
privileged component with access to the entire system.
The privileged component is an artifact of the Ring Model
of isolation at the hardware level. section V presents
our vision, which replaces this model with a single flat
memory space where isolation is provided at arbitrary



3

granularities by hardware, building off our existing work
on “zero-kernel” operating systems.

Before discussing each component of our vision in turn, we
first introduce foundational concepts we build upon throughout
our vision in section II. Once we have presented our vision,
we discuss how it is uniquely enabled by recent advances in
semantically aware hardware, namely tagged architectures, in
section VI. In particular, we show how tagged architectures
can address the challenges we identify in language based
security, I/O validation, and least privileges, and how existing
techniques in these areas make the application of tags feasible.

II. FOUNDATIONAL CONCEPTS

Here we define memory and type safety, the provision of
which is a key component of our vision. Further, we introduce
tagged architectures, which can be used to eliminate the
semantic gap between source code and machine instructions.
We later show how tagged architectures uniquely enable our
vision in section VI

A. Memory and Type Safety

Early programming languages such as C and C++ are
designed to enable the highest possible performance of an
application. Generally, this is accomplished by minimizing the
gap between the operational semantics of the source language
and the actual semantics of the underlying machine architec-
ture. This gives developers substantial power to take advantage
of low-level program operations (e.g., pointer arithmetic to
access struct fields), but also fails to enforce two critical
security properties: memory and type safety. C permits the
creation and dereferencing of pointers to arbitrary memory
addresses, for example, which potentially allows any mapped
area of memory to be corrupted by a bug. Microsoft recently
disclosed that around 70% of attacks against their software are
rooted in such vulnerabilities [3]. C++ is vulnerable to type
confusion, where, e.g., an object of an unrelated class is used
for a virtual dispatch. Both memory and type safety violations
allow an attacker to manipulate the program’s state, building
and executing so called “weird machines” that, for instance,
give a remote attacker control over the compromised system
(e.g., by spawning a command shell).

a) Memory Safety: Memory Safety violations arise when
a pointer is misused to access non-programmer-intended ob-
ject. For instance, a write overflows an array into an adjacent
object, or a pointer to a free’d object is used to write to
memory that has been reallocated to a new object. Such buffer
overflows and use-after-free (UaF) vulnerabilities violate the
two tenets of memory safety: (i) Spatial or Bounds safety,
which requires that all pointer dereferences are in bounds of
the referenced object, and (ii) Temporal or Lifetime safety,
which requires that the referenced object be allocated. Formal
models of memory safety assign pointers capabilities to
access memory, which encode the bounds and lifetime of the
underlying object. A dereference is only valid if a pointer
currently holds the capability for the underlying memory
object.

Languages which provide memory safety inherently require
some runtime checks. Object bounds, particularly for heap
objects, can be determined at runtime based on, e.g., user
input. Optimizing the required set of checks has seen sig-
nificant research interest as it directly impacts performance.
Temporal safety frequently depends on garbage collection,
which is a research field in its own right. Alternately, lan-
guages such as Rust enforce temporal safety at compile time
through their type system, at some loss of expressiveness, see
subsection III-A.

b) Type Safety: While memory safety concerns itself
with when and where bits are written in memory, type
safety concerns itself with how those bits are interpreted.
For instance: is a word of memory a float, an int, or
a pointer? Type safety also encompasses the size of the
data, e.g., a 32 vs 64 bit integer. Indeed, the programming
language community has developed strongly typed languages
that provide spatial safety through their type system. Object
oriented language features such as inheritance and virtual
dispatch provide additional challenges for type safety, as they
introduce an extra layer of abstraction and type information
on top of the program’s data. C++ is particularly vulnerable
to type confusion attacks, wherein an attacker either causes
an illegal downcast, uses a memory corruption to change the
type of an object, or causes an arbitrary region of memory to
be interpreted as an object of some class.

To prevent type confusion attacks, programming languages
have adopted type systems, which can be classified along two
different dimensions: (i) time of enforcement, and (ii) rigor
of the type system. Type safety can be enforced statically
or dynamically. Static enforcement requires the types of all
objects be verified at compile time, and not change during
execution. In contrast, dynamic enforcement allows variables
to change types at runtime (as is common in, e.g., Python),
at the expense of performance overhead. Static enforcement
can be overly strict and limit program expressiveness in
order to provide guarantees: for instance, downcasts in object
oriented languages are frequently useful but impossible to
verify statically without strong assumptions about aliasing.

Regardless of how the type system is enforced, it can be
either strong or weak. Modern languages such as Rust and
Go are strongly typed, whereas C/C++ are only weakly typed.
Strongly-typed languages check type casts are either at com-
pile time, or at runtime. Rust and Go are more efficient than
the Runtime Time Information (RTTI) that is available in C++,
and perform most of their checks at compile time. Modern
compilers have made strongly typed languages significantly
easier to use for developers by including strong type inference
algorithms, which enable the compiler to learn the correct type
for most variables without the programmer specifying the type.
As strongly typed languages are more secure and increasingly
more user friendly we believe that they are here to stay.

B. Tagged Architectures

Tagged architectures allow the enforcement of general pur-
pose security policies, such as memory and type safety. These
systems extend hardware with additional metadata “tags”



4

about memory and instructions at the granularity of individual
words in memory, which enables the enforcement of arbitrary
policies over instructions and data. In essence, rich semantic
information about the expected behavior of the code can be
encoded in the processor via tags, and validated at runtime. A
variant on this notion is capabilities, or unforgeable, immutable
tokens which grant ability to perform operations. The notion
of tags/capabilities has seen significant academic (CHERI) as
well as government (DARPA CRASH/SSITH) interest.

CHERI (Capability Hardware Enhanced RISC Instruc-
tions) [4] is a tagged architecture capability system which ex-
tends a 64-bit MIPS ISA to provide capability-based memory
safety by essentially replacing pointers with capabilities. A
capability in CHERI looks a lot like a fat-pointer; it is a 256-
bit entity providing base, length, and offset fields as well as
permission bits and object type information. However, CHERI
assigns capabilities to entities other than pointers, such as
processes and file permissions, making their system robust and
general purpose. CHERI capabilities can be used for memory
and type safety, isolation, and access control among others.

The Dover Inherently Secure Processor [5] is a tagged
architecture that grew out of the DARPA CRASH and SSITH
programs. Like most tagged architectures, Dover extends each
word in memory with metadata. One interesting aspect of
Dover’s design is decision to separate it into two cores. The
first core is the primary application CPU that operates on the
data itself. The second is the Policy EXecution (PEX) core
that computes policy over that metadata. This decision allows
any CPU to be used as the application CPU with minimal
modification; Dover is currently using RISC-V. Dover supports
the enforcement of general policies in hardware, including
in particular memory / type safety and isolation which are
of critical importance to our vision. We explore how this
architecture can be leveraged to create secure systems in
section VI after fully laying out our vision.

III. LANGUAGE BASED SECURITY

Modern languages provide substantially more powerful ab-
stractions than C/C++ do, including static features such as
strong type systems and runtime features such as garbage
collection, which can collectively be thought of as language
based security. Such abstractions remove responsibility for low
level details from the programmer, and seek to guarantee that
if the code compiles and executes it will be memory and
type safe, preventing attackers from being able to hijack the
application to execute their weird machines. Static checking
guarantees that a program does not suffer from a certain class
of bugs, while dynamic (runtime) checks guarantee that a
program will halt upon encountering that class of bugs. Of
course, neither kind of check is free. Static guarantees from
type checking limit functionality in Rust, forcing reliance on
unsafe code for common data structures such as doubly-linked
lists. Dynamic checks such as Go’s garbage collector add
performance overhead.

Language-based security is a powerful tool for securing
software because it removes all reliance on developer-inserted
manual checks. As long as the compiler/runtime are correct,

any code that compiles and runs is free of some of the most
dangerous classes of bug. Regrettably, however, the previous
statement is not entirely true on two fronts: (i) Language
Design and (ii) Language Implementation. Language design
provides safety by making developers rely on abstractions
when writing their code. Such abstractions can limit pro-
gram functionality, particularly for low-level systems code
that implements custom data structures or accesses low-level
hardware details. To mitigate these issues, many languages
provides an escape from the languages abstractions so develop-
ers can write arbitrary code. Such “unsafe” code regions break
the security guarantees of the language. The implementation
of “safe” languages can also expose flaws, particularly in the
correctness of the runtime system, which is often written in an
unsafe language. An additional challenge when implementing
a safe language is performance: developers and users demand
code that runs as fast as existing languages (plus or minus
5% [2]).

A. Language Design Challenges

Some software cannot provide its intended functionality
while remaining within the constraints of language abstrac-
tions. To address this, many memory and type safe languages
provide an “escape hatch” out of the abstractions that allows
the developer increased control of the process, but at the cost
of weakened or eliminated guarantees with respect to bug-
freeness. Rust, for example, provides the unsafe keyword.
Within a block labeled unsafe, C-style pointers can be used
to manipulate memory in arbitrary ways. Note that this doesn’t
mean that unsafe code necessarily has, for example, memory
corruption vulnerabilities. Rather, the compiler or runtime can
no longer guarantee the absence of such vulnerabilities and the
onus is placed back on the developer to write correct code. If
a bug is present, its effects are not necessarily restricted to the
unsafe region and data it was directly handed. The bug may
allow corruption of data or code throughout the entire process
image, even if all other memory accesses are verified safe by
the compiler. An open challenge in language safety research
is how to provide a spectrum of security/control options that
bound the damage bugs in unsafe code can do, rather than a
binary safe/unsafe tradeoff where a single line of unsafe code
could corrupt the entire otherwise-safe process.

a) Complex Datastructures: A common example of the
need to violate language abstractions is when implementing
complex (e.g., graph-like) datastructures in a language like
Rust, which provides compile-time enforcement of temporal
memory safety. Rust’s ownership model permits a memory
object to have either an arbitrary number of read-only ref-
erences, or a single read/write reference. This does not allow
data structures like double-linked lists or graphs with cycles, as
both require multiple read/write references to the same object.
Rust’s philosophy when addressing this kind of problem is
the notion of safe APIs to unsafe code. The intent is to
encapsulate necessarily-unsafe code with a safe interface, such
that external code can only use the unsafe code in the way
intended by its developer. Rust uses this approach to provide
an automatically reference-counted pointer (called an Rc), for



5

example. Unsafe code is needed to manage (among other
things) raw memory for object wrapping and unwrapping. Its
API only allows safe usages of the Rc, however, such as
attempting to unwrap an object from the Rc container and
succeeding only if there is a single reference remaining.

Safe interfaces to unsafe code are one mechanism for
providing a spectrum of security/control options to developers.
Rc objects are not as secure as standard references, as they
are not thread-safe. They are, however, much more secure
than relying on the developer to manually track references
and handle deallocation on their own. That said, this approach
comes with its own challenges. First, the API must indeed be
‘safe’. This means that safety guarantees which hold over a
program written only in the core Rust language still hold over
code using the language extension defined by the new API.
Second, the unsafe code behind that API must actually be bug-
free. If either of these properties fails to hold, the application
may be at risk of memory corruption vulnerabilities or other
dangerous bugs.

One approach to ensuring that safe interfaces to unsafe
code are actually safe is to leverage formal verification of
the API and unsafe code. This technique mathematically
proves that the implementation of a specification has the same
semantics that the specification has. This enables provable
bug-freeness, but in general is very time and labor intensive.
The seL4 formally verified microkernel, for example, consists
of approximately 10,000 lines of code and took over 20
person-years to fully verify. The Rustbelt [6] project has
made promising inroads on verified Rust APIs, however.
Rustbelt is an ongoing effort to formally verify that the APIs
encapsulating unsafe code in libraries are indeed safe (i.e.,
that all of Rust’s guarantees hold over the compiled software,
despite the presence of unsafe blocks). Several key APIs from
the Rust standard library have already been verified, including
the Rc object discussed above. Note that Rustbelt does not
verify that the developer has written bug-free code. It verifies
that the API semantics are safe when composed with the larger
program’s semantics, not that the implementation of a specific
API is bug-free.

b) Separate Compilation: For languages that statically
guarantee memory and type safety, such as Rust, separate
compilation poses a fundamental design challenge, as their
guarantees require whole program analysis. Such analysis is
impossible, even assuming that all applications are statically
linked, in at least two cases: inter-process communication,
and system calls to the OS (Figure 1, Label 1). Even lan-
guages with runtimes that guarantee safety fail to transmit the
necessary information across the process / kernel boundary.
We discuss this issue in depth in section IV, including how
hardware can be leverage to preserve semantic information
across these boundaries.

c) Low-Level Operations: Operating systems and many
embedded applications cannot operate over an abstraction
of a computer, because they are responsible for actually
interfacing with the hardware. Context switching, interrupt
handling, memory mapped I/O, and register operations are all
architecture-specific algorithms that require inline assembly
instructions in the source code. This is obviously unsafe

and can lead to memory corruption. Unfortunately, since
architecture-specific instructions are outside of a source lan-
guage’s semantics, language safety mechanisms cannot be
used to protect inline assembly. Worse, source code that
would otherwise be protected may become corrupted due to a
vulnerability in the inline low-level operations.

Formal verification may be an option for protecting inline
assembly code. The assembly is designed to accomplish a
single, well-defined task such as context switching. It is
also generally fairly short, on the order of 10s of lines of
code. While formal verification is time-consuming, it may be
tractable for such small snippets. Another approach is to limit
the damage that bugs in inline assembly can cause. Memory
that is not intended to be modified by the low-level operations
may be able to be unmapped or rendered inaccessible during
execution of that code fragment.

B. Language Implementation Challenges

Implementing the runtime required for a safe language
presents two challenges: (i) insuring that runtime itself is
not buggy / vulnerable, and (ii) that the language meets the
performance demands of “real-world” users.

a) Runtime Vulnerabilities: Languages that provide both
spatial and temporal safety are, in an ideal world, immune to
memory corruption attacks. In reality, the quality of the mem-
ory safety guarantee depends on the quality of the language’s
compiler and runtime. Examples of memory-safe languages
include Java, Rust, Go, and nearly all interpreted languages
such as Python and Javascript. Not all implement it in the same
way, however. Java relies primarily on run-time enforcement
of both spatial safety (e.g., array bounds checking) and tem-
poral safety (via garbage collection). Rust, conversely, relies
almost entirely on compile-time temporal safety checks via
its ownership model, with some instrumentation inserted at
runtime for spatial checks. Attacks on memory safe languages,
e.g., Java, do not exploit memory corruption bugs in the
programmer-developed source code. Instead they exploit the
implementation of the Java runtime, which is written in the
memory-unsafe C language. Languages, such as Rust, with
minimal runtimes suffer from design limitations, as previously
discussed.

b) Performance: An oft-cited reason for why legacy
languages persist to this day despite their known security
shortcomings is that they allow developers to eek out the
highest possible performance with the smallest possible foot-
print. This is especially relevant in the embedded and realtime
domains, where platforms are highly resource-constrained and
may need to process inputs in a time-deterministic manner to
meet realtime constraints. The performance argument is valid
for languages which rely on heavyweight runtime enforcement
of checks to provide memory or thread-safety. Garbage collec-
tors, for example, are leveraged by Java (and JVM languages
in general), Go, and most interpreted languages. They provide
automatic enforcement of temporal memory safety by tracking
object references and deallocating objects which are no longer
in use. This comes at the cost of unpredictable timing and
memory usage properties of the application, as most garbage



6

collectors will batch operations over time. This causes sudden
slowdowns when the batch is processed, as well as sudden
reductions a memory footprint that will start increasing again
after collection.

Garbage collection is not the only way to provide temporal
memory safety, however. Rust’s ownership model provides a
type system which allows static analysis of object references.
The compiler can thus identify when an object should be
deallocated, whether there exist any bugs which could cause
invalid pointer dereferences at runtime, and if so emit an
error. Barring use of the unsafe keyword, any Rust program
which compiles will be free of temporal memory safety
violations. These compile-time checks negate the need for
runtime enforcement. Rust has performance comparable to
legacy C code and security properties far exceeding legacy
C, and is thus a promising language for embedded systems
programming. Tock OS [7], for example, is an embedded em-
bedded operating system written entirely in Rust and designed
to run on resource-constrained IoT devices.

IV. INPUT/OUTPUT VALIDATION

Regardless of how expressive and powerful a language’s
type system is, any non-trivial program will at some point
need to process untyped, untrusted input from the external
environment or across process boundaries. Soundly assigning
types to data of unknown provenance is an open question
at best, and undecidable at worst. Thus, developers cannot
rely on the language to assign types to inputs. They are
confronted with the challenge of deciding how to manually
verify that incoming data is syntactically and semantically
valid. Once those checks succeed, the developers must still
use a potentially unsafe casting operation to assign the data a
hopefully-correct type, and then perform a potentially unsafe
copy to a hopefully-large-enough buffer. If those checks are
insufficient and malicious data is successfully cast into a
language’s type system, many security properties may no
longer hold.

To illustrate the difficulty of typing incoming data, consider
a common encoding for network packet fields: the Type-
Length-Value format. The Type and Length fields provide
instructions to the receiver as to how the Value field should
be treated. If these are maliciously chosen, the attacker can
induce a variety of effects. In memory-unsafe languages, an
inaccurate Length field could cause adjacent memory to be
read from or written to. This was the mechanism exploited
by the well-known Heartbleed attack. This problem is not
limited to external hardware interfaces. Consider, for example,
a structure containing a memory reference that’s populated
based on input data (e.g., in a loader preparing a program
on disk for execution). If the data is encoded differently than
what the program expects (e.g., in little- vs. big-endian), the
memory reference will point to a potentially attacker-chosen
location, and can be leveraged to violate memory safety.
Malicious processes can use similar type-confusion attacks
against a host operating system using its system call interface,
or against other processes via inter-process communication.

This problem will exist as long as incoming data is untyped
and cannot be validated short of developer-inserted checks.

While the problem of typing unknown data is very difficult
to address in the general case, there are opportunities to
leverage pre-existing information to automate input validation.
Even for external, e.g., network or peripheral device inputs,
the compiler has access to the intended type of input data, for
example. In many cases, it may be possible to automatically
generate a parser for that type, and instrument the emitted
binary such that a cast succeeds only if the input data is
parsed successfully (Fig. 1, Label 3). This does not mitigate
attacks on the semantic validity of the data, but it eliminates
the low-hanging fruit of malformed input. In the case of
intra-system communication (including system calls and inter-
process communication), the issue is not generating type
information, but retaining it across user defined barriers in
the system. In such cases, redesigning the hardware and OS
to support preserving type information will be effective.

V. LEAST PRIVILEGES

Least privileges are a well known security principle, which
is commonly applied to file access permissions and other role
based access control schemes. Unfortunately, this principle is
not commonly applied to code and data within applications,
or modules within the operating system. Adopting memory
safety, see section III, moves applications closer to the least
privilege ideal as access now requires a programmer created
reference. Operating systems, however, pose additional chal-
lenges as they have direct access to, and control over, sensitive
machine state. To the best of our knowledge, developing
a performant and secure application of least privileges to
operating systems by compartmentalizing them is an open
research challenge.

Operating systems present both a design and an imple-
mentation challenge for enforcing least privileges. The design
challenge comes from the OS being the abstraction layer
across hardware that presents a uniform interface to appli-
cations across many different architectures. Consequently, the
OS has visibility into the state of the entire machine, and is
responsible for managing memory, peripherals, and other low-
level details. As such, it also the natural repository for “priv-
ileged” operations that change hardware state or otherwise
affect the correct operation of the entire system. Many of these
privileged operations are independent of each other, meaning
that today’s monolithic kernels do not respect the principle
of least privileges. Even research micro-kernels that attempt
to split traditional OS services into unprivileged, user level
processes have over-privileged cores at their heart. Providing
isolation and minimizing the privileges of any region of code
is the core design challenge for tomorrow’s secure OSs.

Even with a sound OS design, a secure implementation
is beyond today’s technologies and will require advances
in hardware and programming language design. Despite ad-
vances in memory-safe programming languages, C remains
the language of choice for OSs. This is partly the result of
legacy OSs being written in C for historical reasons. Beyond
that however, there are valid technical reasons for using C.



7

Operating systems frequently reach down into the gory details
of the hardware architecture, directly manipulating registers,
using memory mapped I/O, handling context switching and
interrupts, etc. Such tasks require unsafe code regions at a
minimum in today’s safe languages. Given that porting to
a safe language would still require constructs whose safety
cannot be guaranteed, developers have largely stuck with C.

A. Operating System Design
The landscape in which OSs are designed has fundamentally

changed. With 64-bit address spaces and ample memory in
enterprise systems, it is feasible to imagine a radically different
system architecture, which we call Zero Kernels [1] that
respects the least privilege principle. Zero Kernels provide
isolation of code and data regions, thereby enabling compart-
mentalization and least privileges. Building on this foundation,
Zero Kernels eliminate the kernel/userspace divide, and all
processes operate in a single, flattened address space. Do-
ing so is possible because tagged architectures allow isola-
tion/privilege control at the byte level. Consequently, memory
and process management data structures, for example, no
longer need to be hidden in the kernel, but can be individually
protected. This eliminates the hidden 33% performance over-
head cost of virtual memory and context switching identified
by Singularity.

As the security of Zero Kernels lies in the cooperation of the
OS with the underlying tagged architecture, correctly modeling
privileges and isolation in the OS code, and enabling it to
interact with other processes to provide isolation as a service
is a key challenge. Significant analysis work is required to
divided kernels into minimal regions of functionality, while
still providing the expected performance and functionality.
Similar to seL4, the tag policies themselves should then be
formally verified to ensure they are providing the desired priv-
ilege separation and isolation of OS components or modules
(Fig. 1, Label 2). Providing isolation as a service is a challenge
because it requires the OS to be able to actively mutate
tags on memory in order to change permissions. Suddenly,
the security policy is no longer static and determined by
the compiler tool chain, but dynamic and thus exposed to
malicious actors. Consequently, securely providing isolation as
a service remains an important challenge in developing OSs
that work with tagged architectures to maximize security.

Note the Zero Kernels as we envision them fundamentally
rely on tagged architectures. Consequently, they can be imple-
mented in tomorrow’s more secure languages that have been
designed with hardware support in mind, see subsection VI-A.
Such languages will eliminate the implementation difficulties
faced by today’s secure languages around interacting with
hardware. However, such technologies require significant re-
search and development before they are ready to deploy,
whereas memory and type-safe languages such as Rust are
already here, and can be used to improve OS security while
more advanced technologies mature.

B. Operating System Implementation
We should aspire to have language safety guarantees extend

throughout as much of the system as possible. Given this ob-

servation, implementing more secure OSs in today’s memory
safe languages, warts and all, is just as important as designing
new OS approaches to work with tomorrow’s languages and
architectures.

The approach espoused by the Tock OS, implemented in
Rust, is to decompose the operating system into a kernel,
where all unsafe functionality must reside, and many capsules,
which implement specific functionality entirely in safe code.
The interface between the kernel and the capsules is well
defined, and this architecture seeks to limit the amount of
unsafe code in the system. However, the kernel and capsules
operate in the same address space, and therefore vulnerabilities
in the unsafe code of the kernel can corrupt memory in the
capsules, thereby violating the assumptions upon which the
memory-safety guarantees are built.

An alternate approach to rewriting the OS in a safe language
is to insert a small trusted shim below the OS [8], [9]. The
shim is solely responsible for managing memory permissions
can be used to isolate different parts of the system. Notably,
this approach allows the enforcement of least privileges even
on impoverished, i.e., embedded, systems that lack MMU
support. The shim can provide isolation at the granularity of
processes, or even compartments that are a subset of a process.
Techniques are needed that can consolidate the operating
system into smaller components wherein the principal of least
privilege can be applied, similar to the analysis required to
partition Zero Kernels into minimally privileged components.

VI. SUPPORT FROM HARDWARE

Existing work on hardware defenses for software security
has two major thrusts: (i) ISA extensions by commodity
hardware companies, and (ii) tagged architectures by the re-
search community. ISA extensions take the form of dedicated
hardware that can enforce a single security property, but have
low costs and are available for use now. In contrast, tagged
architectures remain the focus of DARPA programs and other
academic work, though they are beginning to transition to
practice [4], [5]. Tagged architectures are more expensive
than ISA extensions, coming with potentially high memory
overhead for the tags, and in some cases a dedicated security
co-processor. The higher costs of tagged architectures allow
them to support effectively any security policy, making them
a general purpose solution. Additionally, tags remove the
need for virtual memory/MMU as an isolation mechanism,
or privilege mode swaps, replacing these coarse mechanisms
with finer grained tags, see section V. Consequently, the
hidden cost of existing hardware security mechanisms, up to
30% performance overhead [10], is removed. We believe that
the generality of tagged architectures, and the fundamental
redesign of secure systems that they enable, make them better
suited to our vision of secure-by-design systems than one off
ISA extensions.

Our vision is for new, secure software stack enabled by a
tagged architecture. Consequently, we seek to push hardware
enabled software security to the next step by asking how
hardware and software can be co-designed for security, i.e.,
what checks belong in software and which belong in hardware,



8

and how the two can coordinate to enforce security at the least
possible cost.

A. Hardware Support for Language Based Security

By designing hardware and software security policies to-
gether, we can use their strengths to offset their corresponding
weaknesses, and create a memory and type safe machine
with strong isolation primitives. Static guarantees through type
systems are the greatest strength of language-based security
policies, and runtime overhead of dynamic enforcement, e.g.,
garbage collection, along with static requirements that are
over-strict necessitating unsafe code their greatest weakness.
Correspondingly, the greatest weakness of tagged architectures
is that the number/size of tags (and corresponding mem-
ory/processing overhead) is prohibitive for certain policies,
while their greatest strength is the use of dynamic information
in computing policy results at lower performance (runtime)
overhead. Consequently, the goal of hardware/software co-
design is to use static guarantees from, e.g., language type
systems to shrink the policy that must be enforced by the
hardware as much as possible, while using the dynamic nature
of the hardware to prevent the need for unsafe code regions
and remove the runtime cost of security policies.

a) Solving Language Design Challenges with Tags: Con-
sider unsafe code sections within otherwise safe languages. As
previously discussed, these sections exist to provide an escape
hatch from the constraints of the language, enabling correct
constructs that would otherwise be impossible to write. As
a result, the language now provides no guarantees about this
unsafe code. Worse, this unsafe code can impact the safety
of the entire system. With tags, the static type systems in the
language can be relaxed to apply tags in situations where static
guarantees are impossible. The tagged architecture’s runtime
policy can then be leveraged to extend guarantees to these
corner cases by verifying behavior at runtime.

Another where hardware/software codesign is helpful is
inline assembly and other low level operations. As such code is
outside of the semantics of safe languages, they can provide
no guarantees about its behavior, or how it alters memory
state. With tags, it is possible to guarantee that the inline
assembly preserves the memory and type safety of all existing
objects through the policy that the architecture enforces, and
provide some coarse guarantees about memory and type safety
for objects it creates – or full guarantees with programmer
annotations.

b) Solving Language Implementation Challenges with
Tags: Language implementation challenges, such as perfor-
mance overhead from bounds checks in Rust/garbage collec-
tion in Go, or the correctness of the JVM/language interpreter,
are replaced by the challenge of insuring that the correct tags
are generated by the compiler, and the policy enforced by the
architecture over those tags is correct. The power of tagged
architectures is that they have effectively zero performance
overhead (their downsides in terms of memory overhead etc.
have already been discussed). Consequently, any required
runtime check is effectively “free”; the difficulty is in ensuring

that the correct set of checks is performed. Making such
guarantees, particularly for the relatively small policies, is
best done by formal verification. Verifying the compiler tool
chain, which generates the tags, is a significantly more difficult
task, though not completely intractable as shown by INRIA’s
CompCert. Ultimately, once a language and architecture for
security have been standardized this effort should be under-
taken.

c) Solving Tag Size with Languages: Just as tagged ar-
chitectures can address design and implementation challenges
for safe programming languages, safe languages can address
tagged architecture design challenges, specifically around the
size of tags and complexity of policies. For instance, using
coloring to track temporal (lifetime) memory safety for objects
creates an explosion in the number of required tags, and
thus their memory overhead. By using, e.g., Rust’s life time
checker, almost all such tags can be eliminated without resort-
ing to, e.g., garbage collecting tags. Tags are only required
for situations such as circular references in data structures,
where safety cannot be proven statically. Similar, albeit less
dramatic, effects hold for spatial safety checks and type safety.
By requiring tags only for edge cases that are tricky for
static guarantees to support, the work required by the tagged
architecture can be drastically reduced, and along with it the
resources required by the tagging system.

B. Hardware Support for IO Validation

For the intra-system IO case, where two separately compiled
processes are communicating on the same machine, tagged
architectures can effectively preserve the required security
information, i.e., object bounds and type. By persisting tags
on memory that is passed across user defined barriers within
the system, e.g., processes and the OS/userspace bound-
ary, full type/bound/lifetime information can be preserved
throughout the system. Indeed, this is another case where
hardware/software co-design can eliminate information loss
across boundaries in the code, a la the solution for unsafe code
regions. Our vision is to have all components of the system,
across hardware and software layers, cooperate to preserve
critical security information throughout the system, without
losing it across barriers in the system architecture. Indeed, as
we discuss next many of the existing barriers are not needed
under our proposed system design.

C. Hardware Support for Isolation in Operating Systems

In co-designing hardware and software, we should rethink
many of the hardware defenses we use today. These defenses,
like memory isolation and hardware privilege switching, incur
measurable, though often forgotten, overhead. The Singularity
Project [10] at Microsoft Research presented a redesigned OS,
with significant security guarantees from formal models. Sin-
gularity does not require memory-based isolation or privilege
levels, as these are inherently provided by its design. The
authors identify 18% performance overhead due to memory-
based isolation between processes (i.e., virtual memory),
which jumps to 33% when utilizing privilege levels to isolate
user and kernel code (i.e., syscalls). Such overheads would



9

never be accepted for a runtime software security solution,
and can be eliminated by rethinking the way software and
hardware work together, including device drivers and the OS.

D. Hardware Limitations

Hardware support for security policies is a powerful tool,
but is not a panacea. Proposals for new hardware mechanisms
show the trade-off between the immediate deployability (low
memory, power, silicon overhead) of ISA extensions and gen-
erality of tagged architectures. In the end, however, generality
is paramount. Security is an evolving arms race between
attackers and defenders, fixed defenses that cannot adopt to
future threat environments are undesirable. The generality
of tagged architectures comes at a cost though. Memory is
required to store the tags and policies, and computational
resources are required to propagate the tags and evaluate
policies.

A less obvious limitation of hardware is that it cannot
generate the tags/policies by itself; these must be given as
input. Consequently, the compiler tool chain must be modified
to create the tags, and a mechanism created to specify the
policy for the hardware, e.g., Dover’s policy language. . Ded-
icated hardware can process security policies more efficiently
than general purpose CPUs, but still needs the appropriate
programming and inputs. Guaranteeing that the correct tags
are generated and verifying the correctness of policies is thus
required for tags to provide the expected guarantees.

VII. CONCLUSION

Numerous classes of vulnerabilities in modern computer
systems are a direct result of decades-old design decisions.
By leveraging advances in the fields of safe programming
languages, security-aware hardware, and operating systems,
we envision a new, security-centric computer design that can
prevent many classes of vulnerabilities by-design. Further,
our approach, with its emphasis on maintaining and sharing
information across both software and hardware, is capable of
evolving to mitigate new attacks launched by sophisticated
adversaries. We hope that the ideas and directions laid out in
this article spark future research towards the ultimate goal of
a world with fully secure computer systems.

REFERENCES

[1] H. Shrobe, A. DeHon, and T. Knight, “Trust-management, intrusion-
tolerance, accountability, and reconstitution architecture (tiara),” MAS-
SACHUSETTS INST OF TECH CAMBRIDGE, Tech. Rep., 2009.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[3] M. Miller, “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape,” 2019.

[4] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[5] G. T. Sullivan, A. DeHon, S. Milburn, E. Boling, M. Ciaffi, J. Rosenberg,
and A. Sutherland, “The dover inherently secure processor,” in 2017
IEEE International Symposium on Technologies for Homeland Security
(HST). IEEE, 2017, pp. 1–5.

[6] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: Securing
the foundations of the rust programming language,” Proceedings of the
ACM on Programming Languages, vol. 2, no. POPL, p. 66, 2017.

[7] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis, “The
case for writing a kernel in rust,” in Proceedings of the 8th Asia-Pacific
Workshop on Systems, ser. APSys ’17, 2017, pp. 1:1–1:7.

[8] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer, “Enforcing least
privilege memory views for multithreaded applications,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2016, pp. 393–405.

[9] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “Aces:
Automatic compartments for embedded systems,” in Proceedings of the
27th USENIX Conference on Security Symposium, ser. SEC’18, 2018,
pp. 65–82.

[10] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software stack,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 2, pp. 37–49,
2007.


	Introduction
	Foundational Concepts
	Memory and Type Safety
	Tagged Architectures

	Language Based Security
	Language Design Challenges
	Language Implementation Challenges

	Input/Output Validation
	Least Privileges
	Operating System Design
	Operating System Implementation

	Support from Hardware
	Hardware Support for Language Based Security
	Hardware Support for IO Validation
	Hardware Support for Isolation in Operating Systems
	Hardware Limitations

	Conclusion
	References

