More than a Fair Share: Network Data Remanence
Attacks against Secret Sharing-based Schemes

Leila Rashidi*, Daniel Kostecki!, Alexander James*, Anthony Peterson',

Majid Ghaderi*, Samuel Jerot, Cristina Nita-Rotaru, Hamed Okhravi* Reihaneh Safavi-Naini*,
*University of Calgary, {leila.rashidi, alexander.james, mghaderi, rei} @ucalgary.ca
TNortheastern University, {kostecki.d, peterson.ant, c.nitarotaru} @northeastern.edu

IMIT Lincoln Laboratory, {samuel.jero, hamed.okhravi} @Il.mit.edu

Abstract—With progress toward a practical quantum com-
puter has come an increasingly rapid search for quantum-safe,
secure communication schemes that do not rely on discrete loga-
rithm or factorization problems. One such encryption scheme,
Multi-path Switching with Secret Sharing (MSSS), combines
secret sharing with multi-path switching to achieve security as
long as the adversary does not have global observability of all
paths and thus cannot capture enough shares to reconstruct
messages. MSSS assumes that sending a share on a path is an
atomic operation and all paths have the same delay.

In this paper, we identify a side-channel vulnerability for
MSSS, created by the fact that in real networks, sending a
share is not an atomic operation as paths have multiple hops
and different delays. This channel, referred to as Network Data
Remanence (NDR), is present in all schemes like MSSS whose
security relies on transfer atomicity and all paths having same
delay. We demonstrate the presence of NDR in a physical testbed.
We then identify two new attacks that aim to exploit the side-
channel, referred to as NDR Blind and NDR Planned, propose an
analytical model to analyze the attacks, and demonstrate them
using an implementation of MSSS based on the ONOS SDN
controller. Finally, we present a countermeasure for the attacks
and show its effectiveness in simulations and Mininet experiments.

I. INTRODUCTION

The common approach for achieving secrecy and integrity
over an untrusted network is the usage of standard protocols
such as TLS [27] to establish a secure and authenticated com-
munication channel. The security of such standard protocols
is predicated on several assumptions: @ (perhaps trivially)
the protocol can be deployed on all platforms, @ the im-
plementation of the protocol is correct, € implementation

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

The research of Leila Rashidi and Reihaneh Safavi-Naini is in part supported
by Natural Sciences and Engineering Research Council of Canada and Telus
Communications, under Industrial Research Chair Program.

Network and Distributed Systems Security (NDSS) Symposium 2021
23-26 February 2021, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2021.23xxx
www.ndss-symposium.org

of cryptographic schemes will not affect their guaranteed
security, and @ the adversary cannot break the underlying
cryptographic primitives (e.g., the RSA, AES, DH, and DSA
schemes). Several challenges have undermined the validity of
these assumptions. Low-resourced devices (e.g., IoT devices)
often do not have the computational power to implement the
standard protocols (challenging assumption @) [17]; various
implementation flaws have been found [23] in even the most
heavily-vetted protocols (challenging assumption @); despite
secure designs, implementations of cryptographic schemes
contain side-channels such as cache attacks [16] which can
be used to break the security of the system (challenging
assumption @) and the emergence of quantum computing has
challenged the long-term security of existing crypto primitives
(challenging assumption @).

These motivations have led to the development of novel
secure communication protocols that attempt to provide se-
crecy using physical properties such as multiple network paths
[33], [12], [22], [35], [36] and/or introducing dynamism in the
system to stay ahead of an adversary trying to guess what paths
are used for communication [2], [8], [31], [34], [37], [38],
[39], [40], [41], [20], [21], [26], [3]. A class of these novel
protocols leverages the concept of breaking a message into
shares and sending each share over a randomly chosen path,
possibly changing with time. For example, Lou and Fang [36]
propose a secret sharing scheme over multiple network paths to
provide confidentiality with significantly lower computational
requirements (i.e., for low-resourced devices). Dolev and Tzur-
David [13] propose a secret sharing scheme over multiple
network paths to mitigate the problem of stolen or short
keys (i.e., implementation vulnerabilities). Ahmadi et al. [1]
and later Safavi-Naini et al. [28] considered models where
shares of the message are sent over multiple paths that are
changing (switching) in each time interval, and proved that
the system provides information theoretic security and so
stays secure against a quantum computer. Applications on real
networks for such schemes, which combine secret sharing
with multi-path switching, have also started to be proposed,
including [10], which applies secret sharing to provide security
for controller and switch communication in Software-Defined
Networks (SDNs) in the face of an adversary with quantum
computing capabilities.

In this work, our goal is to examine the real-world secu-
rity of schemes that combine secret sharing with multi-path
switching. We consider the scheme in [28] (referred to in
the rest of this paper as Multi-path Switching with Secret

Sharing or, for short, MSSS) because it was shown to have
perfect information theoretic security. MSSS relies for its
security on the assumptions that paths are atomic and packets
travel on such paths with the same delay. In essence, what this
means is that the attacker gets one chance to capture a packet
(a.k.a. a share) on a path. That is not the case in real networks
where paths have multiple hops, and each hop (and path) can
have different delays. These conditions create an environment
for data to linger in the network, creating a side-channel
vulnerability that can potentially be exploited by an attacker to
collect enough shares and break the confidentiality guarantees
of secret-sharing schemes. Note that this side-channel will be
present not only in MSSS, but in all schemes whose security
relies on the assumptions that all paths are atomic and that
messages travel with same delay on all paths. We refer to this
side-channel as Network Data Remanence (NDR) inspired
by data remanence side-channels defined in the NSA/NCSC
Rainbow Series as “the residual physical representation of data
that has been in some way erased” [15]. While data remanence
has been studied extensively in the context of storage media
(e.g., hard disk drives, flash drives, RAM, etc.), it has received
very little attention in the context of networking. To our
knowledge, this is the first time that a data remanence side-
channel has been considered outside storage systems.

We study how an attacker can exploit the vulnerability
introduced by NDR. We identify two new attacks, one where
the attacker blindly tries to exploit the side-channel unaware
of the topology of the paths in the network (referred to as
NDR Blind), and the other where the attacker is aware of
the paths that might be used by shares in the network and
exploits this information (referred to as NDR Planned). We
propose a model that captures the multi-hop nature of paths and
analyze the two attacks against MSSS. Our analysis shows that
while the NDR Blind attacker is not very effective, the NDR
Planned attacker can successfully exploit the side-channel to
reconstruct messages sent using MSSS. Specifically, the NDR
Planned attacker is able to recover the message sent in a
network with 7 paths of length 6 with a probability of more
than 0.5. If the paths are longer, the probability is even higher.

To show the impact of these attacks in practical settings,
we then implement MSSS in an SDN setting, using the ONOS
controller. SDN is a natural choice to implement multi-path
protocols because of the ability of communicants to control the
paths that are used by data packets. Our results collected from
the testbed show that many shares do linger in the network long
enough to open a side-channel, and our Mininet experiments
corroborated the analysis results about the effectiveness of the
NDR Planned attacker. Namely, in a network with 10 disjoint
paths, the attacker is able to recover up to 30% of the data
with different numbers of shares and path lengths, both when
paths all have the same delay and when path delay varies.

This work does not argue the merits of multipath schemes
or SDN, nor focus on securing SDN (the security of SDN
itself is orthogonal to this work). Instead, we argue that with
the widespread usage of SDNs in data centers and cloud com-
puting platforms, it is imperative to understand the practical
limitations of the newly proposed multipath schemes (as was
the case with other schemes such as TLS). We emphasize that
NDR does not depend on SDN, the essence of this side-channel
is that paths are not atomic and that they have different delays.

Equipped with this new system model and attack strategies,
we design a countermeasure that specifically targets NDR at-
tacks. The main idea behind our countermeasure is to create
shares and distribute them across not only space (changing
the K paths used), but also time (different shares for a single
message are sent at different times). Our countermeasure intro-
duces a new parameter H, that controls how many additional
shares are sent, and thus trades-off security for overhead.
We demonstrate, through analysis and Mininet experiments,
that our proposed countermeasure mitigates the attacks. In a
network with 10 disjoint paths and 3 intermediate nodes the
countermeasure was able to drop all recovery to below 2%,
where recovery in a similar setting without our countermeasure
reached up to approximately 30%.

We summarize our contributions as follows:

e We implement and evaluate the MSSS scheme in an
SDN, using the ONOS controller.

e We uncover NDR, a network data remanence side-
channel, general to all secret sharing and multi-path
switching schemes whose security relies on the as-
sumption that packet transmission is an atomic event.
We show two attack strategies, NDR Blind and NDR
Planned, that exploit this side-channel that break the
security of MSSS.

e We evaluate multiple strategies in a simulated envi-
ronment to study the probability of success by an
attacker. We find that the chance of success for a NDR
Planned attacker can be as high as 30% in Mininet
experiments.

e We discuss a countermeasure and possible improve-
ments to these schemes to mitigate our attack. We
show effectiveness of the proposed countermeasure
using theoretical analysis and experiments conducted
using Mininet.

The rest of the paper is organized as follows. In Section II,
we provide background on the main building blocks behind
MSSS, secret sharing and path switching, and then describe
MSSS and our SDN implementation of it. In Section III, we
describe the side-channel and attack strategies to exploit it.
Section IV is dedicated to showing the existence of the side
channel in a real SDN testbed. In Section V, we present a new
model for systems like MSSS and an analysis of the attacks.
In Section VI, we provide an evaluation of the attacks for our
SDN implementation of MSSS using Mininet. In Section VII,
we present a countermeasure for the attacks and show its
effectiveness. Section VIII discusses the generalizability of
the uncovered side channel and our proposed countermeasure.
Finally, we present related work in Section IX, and conclude
our paper in Section X.

II. MULTI-PATH SWITCHING WITH SECRET-SHARING

Message confidentiality in network communication is tra-
ditionally achieved by using cryptographic primitives that as-
sume a computationally bounded adversary. For such schemes,
security relies on secret keys that are established before secure
communication starts.

There are, however, a number of approaches that use
network properties or cryptographic primitives that do not
rely on computational assumptions about the adversary. These
approaches primarily use the following mechanisms: (i) secret
sharing where a secret is broken into multiple shares (ii)
disjoint multi-path routing, where data is sent on multiple
node-disjoint paths between the sender and the receiver, and
(iii) path switching where the sender changes the path(s)
that are used for communication over time. Each of these
primitives achieves certain security properties under different
assumptions; for secret sharing, security relies on the attacker
not being able to obtain enough shares; in multi-path routing,
security relies on attacker not being able to control all the
paths; and in path switching, security relies on the attacker
not knowing the pattern with which paths are switched. Below
we provide an overview of these mechanisms, and describe
Multi-path Switching with Secret Sharing (MSSS) a scheme
that combines these techniques to withstand strong adversaries.
We also present a design for MSSS using SDN.

A. Secret Sharing

First proposed by Shamir [30] and independently by
Blakely [6], secret sharing is a fundamental building block
in secure multiparty computation [9], distributed storage [11],
and side channel protection [25].

A (t,n) threshold secret sharing scheme uses a randomized
share generation algorithm that takes a message m and gen-
erates n shares, and a deterministic reconstruction algorithm
that takes any t shares and reconstructs the message m. The
security property of the algorithm is that any ¢ — 1 shares
do not reveal any information about the message. That is, the
message will be perfectly (information theoretically) secure
if the adversary can have access to at most ¢ — 1 shares. In
Shamir secret sharing, the share generation and message recon-
struction algorithms correspond to polynomial evaluation and
interpolation over finite fields, both with efficient algorithms.

A special case of threshold secret sharing is a (k, k) scheme
where all shares are needed for reconstruction. Unlike (¢, n)
schemes that are constructed over finite fields, they can be
constructed over any (mathematical) group such as groups of
integers modulo M, denoted by Z);, where M is a composite
number. Let the message m € Z,. The share generation for a
(k, k) secret sharing is done by selecting k — 1 random values,
81,82, "+ ,Sk—1 € Zps, and computing s = m — Zi:f S;.
Reconstruction is done by simply adding all the shares.

B. Multi-path Routing and Path Switching

Secret sharing and multi-path routing are a natural match
to provide confidentiality. Such a scheme constructs shares of
a message using a (¢,n) secret sharing scheme and sends
each share on a distinct node-disjoint path. The message
remains perfectly secret as long as the adversary can access
at most t — 1 paths (for example, by compromising a node
on the path). Additionally, the system provides reliability for
communication since, as long as ¢ of the paths can deliver their
corresponding shares, the secret can be correctly reconstructed.
In schemes such as [36], [35], [22], [13], there are n paths
that connect the sender and the receiver, and a set of paths
will be chosen by the sender and receiver to transmit the

shares. For schemes that use a fixed set of paths, the adversary
can infer the set of paths used for long flows by monitoring
network activity, enabling them to break the security of the
communication.

Another approach used to provide confidentiality is path
switching. In schemes such as [34] a random path is chosen for
each message and used for transmission of that whole message.
For these schemes, a single path carries the whole message,
providing no additional reliability.

One approach to address the limitations of the above
schemes is to combine path switching with multi-path routing
and secret sharing, here time is divided into intervals and the
sender and receiver switch to a randomly selected set of paths
in each time interval and send message shares on these paths.

C. Multi-path Switching with Secret Sharing

In this paper we consider the scheme in [29] and refer to
it as Multi-path Switching with Secret Sharing (MSSS). The
scheme allows a sender to send a message to a receiver with
perfect information theoretic security without the need to use
a secret shared key. The scheme assumes that the sender and
the receiver are connected by N node-disjoint paths, K of
which can be observed by the adversary at any given time.
The sender uses (K, K)-secret sharing to generate K shares
for the message, randomly selects a subset of K paths (from
the total NV paths), and sends each share on a distinct path. The
adversary can monitor K paths of their choice. Time is divided
into intervals where in each interval the sender and the receiver
have the opportunity to change the set of paths that they use
for transmission. The adversary is mobile, and can also change
the set of paths that they are using in each time interval. The
system is analyzed as a Markov game between the attacker and
the sender and receiver, with the goal of the attacker being to
find the K paths that are used in each interval (to recover the
message). Using (K, K) secret sharing implies that all shares
must be available for reconstruction of the message, although
the scheme can be generalized to (¢, K) secret sharing where
only ¢ of the K chosen paths are needed for data recovery. Note
that MSSS was proposed for the explicit purpose of enhancing
secrecy when faced with strong attackers or when traditional
protocols may have weaknesses. While this scheme provides
information-theoretic security and remains secure against an
adversary with access to a quantum computer, it increases the
required bandwidth. Thus, it is not suitable when optimization
of bandwidth utilization is the main concern.

D. SDN-based Design for MSSS

MSSS requires that a set of N node-disjoint paths exist
between the sender and the receiver and that the paths on which
packets travel are switched periodically. These requirements
are challenging to obtain in traditional networks because the
sender and receiver do not typically control the paths that are
taken by their packets. There are, however, several possible
approaches to ensuring a disjoint set of paths, including overlay
networks, source routing, and SDN.

SDN is the most appealing as it also provides the ability
to dynamically control the paths in the network. Specifically,
SDNs separate the network into a control-plane and a data-
plane. The data-plane consists of the switches in the network

SDN Controller

flow
rules

Sender Receiver
— ubP —
application application
= =
secret e fors00h secret
ubp UDP
- -
encrypt T.T: - T decrypt
- Port; 50208 Port: 50203 -
ubp
k=3 k=3
QO - switch

Fig. 1: An SDN-based MSSS

and its sole job is to move packets in the network as directed
by the control-plane. The control-plane consists of a logically
centralized controller that has a global view of the network
and provides forwarding instructions to the data-plane. This
controller typically runs one or more apps that implement
policy for the network. One such policy can be path switching
on disjoint paths as required by MSSS.

Figure 1 shows our design of MSSS using SDN. Here we
use an SDN app that allows a sender to request a set of IV
node disjoint paths to a receiver from the controller. The SDN
controller computes a set of disjoint paths between the sender,
and receiver and configures the data-plane to provide them. At
each time interval, the sender randomly picks K paths from
the set of IV paths to use for sending message shares, thereby
switching within the total set of IV paths. The receiver listens
to all N paths so it receives all shares of the message.

An important question for any design of MSSS is how
packets for different paths are identified so that the network can
forward them appropriately. If the sender and receiver actually
have N Network Interface Cards (NICs), then no explicit
differentiation is needed. Otherwise, some part of the packet
must identify its path. In our design, we encapsulate message
shares in UDP datagrams and use UDP ports to distinguish
between paths. This works well with common OpenFlow-
based SDNs [14], which are limited to matching fields in
Ethernet, ARP, IP, IPv6, TCP, and UDP.

III. SIDE-CHANNEL ATTACKS IN MSSS

In this section, we identify a new side-channel created by
implementations of MSSS in real networks and show several
attacks that exploit the side-channel to break confidentiality.
Below we first describe the side-channel, and then describe
attacks that can exploit it.

A. Network Data Remanence Side-Channel

In the design of MSSS, the network is abstracted as a set
of wires [12], each corresponding to a direct path connecting
the sender to the receiver, over which all packets travel
instantaneously. The security analysis of such secret sharing
schemes considers a strong mobile adversary, but is based on
the above network abstraction model.

In a real network, each path consists of a sequence of
links and switches. In other words, the propagation of shares
along network paths is not an atomic operation, rather shares
traverse each link and switch sequentially following the store-
and-forward design of TCP/IP networks. To eavesdrop on a

path, an attacker can probe any of the links and switches
that constitute the path. Or, perhaps, an attacker could even
probe multiple links or switches on a path, depending on their
probing capabilities. In particular, while probing links requires
physical access, probing switches can be done remotely. For
example, in an SDN network, by installing appropriate for-
warding rules on chosen switches, an attacker could receive
a copy of any packet that matches the IP addresses of the
sender and receiver. Because network paths are not atomic
wires and paths do not all have the same delays (two of the
main assumptions in the ‘idealized’ network model in secret-
sharing schemes), residual shares from previous messages still
exist in the network when a new message is being sent. Note
that this behavior is general to any real network and is not
specific to SDN-based implementations.

Implementations of MSSS in real networks, therefore,
introduce a side-channel that we call Network Data Rema-
nence (NDR), because of its similarity to the known data
remanence in storage systems. This side-channel allows the
attacker to effectively break the boundaries of the abstract
model (i.e., the attacker is limited to capturing on at most K
paths in each time interval in [29]), and recover the message.

B. Threat Model

We assume that the attacker captures packets at nodes/hops.
In a typical network attack, switches are compromised when
they are vulnerable, maybe because a weak password was used
or a software vulnerability is present in their implementation.
Switches in an enterprise-level network often have rather
homogeneous models, so we assume that the attacker has
access to all switches and can redirect a copy of the traffic to
their machine. It is important to note that, while the attacker
has access to all of the switches, they cannot possibly capture
traffic from all of them at all times because that would
require an unreasonably fast machine with significant resources
and bandwidth (even RAM write speeds become an issue in
that scenario), and such an attack is also easily identifiable.
Therefore, the attacker can only realistically capture a fraction
of traffic from each switch (say 10%) at a fraction of switches
at each time (say 10%).

We assume that the attacker is able to listen to at most KX
switches simultaneousely, where K is equal to the number of
paths used to send shares of a message in MSSS. Based on its
resources, the attacker can switch what paths they are listening
to and at what intermediate nodes.

C. Network Data Remanence Attacks

We define a Network Data Remanence (NDR) attack as an
attack that leverages residual network packets left in network
links or devices (including switches, hubs, access points,
routers, and network interface cards) when they are assumed
to be gone.

We consider a number of possible attacks that exploit the
NDR side-channel to break MSSS. Table 1 summarizes the
attacks considered in this paper. Below we explain the details.
Note that we refer to the number of edges between two nodes
as the distance between the nodes. Also, hop and intermediate
node are used interchangeably.

Name | Abrv. Exploits NDR | Knows Switching Time | Switches Nodes | Knowledge of Path Composition
Fixed FIX No Yes No Partial
Independent IND No No Yes Partial
Sychronized SYN No Yes Yes Partial
NDR Blind BLD Yes Yes Yes Nothing
NDR Planned PLN Yes Yes Yes Complete
NDR Planned Opt OPT Yes Yes Yes Complete

TABLE I: NDR Attacks.

P1 @

G

Fig. 2: A multi-hop network topology. The hosts A0 and hl
are connected to the network via the ingress/egress switches
s3 and s4, which are assumed to be trusted. There are N = 3
paths between s3 and s4, each of length L = 2 hops.

Basic Attacks. The most basic attacker, which we call
Fixed is an attacker that selects a set of K paths and one hop
along each of those paths, and listens to those hops. A slightly
smarter attacker changes the set of K paths they are listening to
at the same time as the sender changes paths, but they listen to
a fixed hop of any selected path. Depending on whether or not
the attacker’s switching is synchronized with that of the sender,
we refer to such attackers as Synchronized and Independent,
respectively. An independent attacker can switch paths faster
or slower than the sender, as they do not know when the
sender switches path. These three attackers get one chance at
capturing each share on a path, thus, without loss of generality,
we assume that the attackers can listen to hops placed at
distance 1 from the sender. These attacks may benefit from
the NDR side-channel, but they do not deliberately exploit it.

To see how the unrealistic assumptions made in the models
affect message security, consider the following toy example.
The sender uses a (2, 2) secret sharing scheme to send a
message securely to the receiver over N = 3 paths. Time
is divided into time slots of length J. In each time slot, the
attacker is able to listen to at most K = 2 paths. The network
topology is depicted in Fig. 2, in which the sender and receiver
are connected together via 3 paths P;, P», and Ps, where each
path has two hops. We assume that the ingress/egress switches
that connect the sender and receiver to the network are trusted.
As such, we focus on message transmission between these
boundary switches. Assume that it takes exactly § for a share to
traverse one hop in the network. Thus, it takes 20 for each share
to reach the receiver. Under the model from [29], the message
shares are sent and received in a single clock tick, J, and the
attacker, therefore, gets only one chance at capturing shares.
However, in our multi-hop network example, the attacker will
get 2 chances because a share takes 2 to traverse a path.

NDR Attacks. The most basic attacker which aims to
exploit the side-channel, randomly selects K intermediate
nodes to monitor from the set of all intermediate nodes every

¢ time interval. In addition, we assume that this attacker is
synchronized with the sender (i.e., knows when the sender
switches its paths). We refer to this attacker as NDR Blind.

A smarter attacker follows shares as they travel along
the paths in the network (this attacker is also synchronized
with the sender). Initially, the attacker listens to K random
intermediate nodes of distance 1 from the sender. In order to
capture the shares it missed in the first switching interval, the
attacker then probes K random intermediate nodes of distance
2 from the sender during the second switching interval. The
attacker goes one link further at each switching interval until
all shares of the first message are delivered to the receiver.
At the next switching interval, the attacker then selects K
random intermediate nodes of distance 1 from the sender to
capture the shares of another message, and so on. We refer to
this attacker as NDR Planned. An optimization of the NDR
Planned attacker is possible where the attacker checks at each
step to see if all shares needed to reconstruct a message are
captured, and if so, immediately starts listening at distance 1
again, instead of continuing to listen to the next hop. We refer
to this attack as NDR Planned Opt. All these attacks, NDR
Blind, NDR Planned, and NDR Planned Opt are attacks that
aim to explicitly exploit the NDR side-channel.

IV. INITIAL EVIDENCE FROM TESTBED

The objective of this section is to experimentally demon-
strate the presence of the NDR side-channel when using
MSSS in a real network. To this end, we implemented a small-
scale SDN testbed to experiment with MSSS, and derived some
initial results which indicate the possibility of an NDR side-
channel.

A. Testbed Setup

We first describe the configuration of the SDN testbed that
we built to experiment with MSSS. The testbed is designed to
allow the collection of full payload packet traces as well as
statistical counters (e.g., number of bytes exiting a switch port)
from switches for further offline analysis and attack emulation.

Physical Topology. We used four Aruba 2930F switches
[24] to construct the substrate network in which our testbed
experiments were conducted. Each of the physical switches
supports OpenFlow version 1.3 [14] and can host up to 16
distinct OpenFlow agent instances. Each of the OpenFlow
agent instances hosted by a particular switch is assigned a
subset of the physical ports present on the switch. Each
Aruba 2930F switch includes 24 ports, each at 1 Gbps. From
the perspective of the SDN controller, each OpenFlow agent
instance appears as a distinct OpenFlow enabled switch in the
substrate network. This scheme, in which multiple OpenFlow

agent instances are co-located at the same physical switch,
allows for the construction of diverse network topologies
using relatively small amounts of physical switching hardware.
Specifically, for the experiments presented in this section, we
configure the testbed to have a complete graph topology with
10 nodes. All internal links interconnecting the nodes in the
substrate topology have 1 Gbps capacity.

Orchestration Framework. In order to conduct our experi-
ments, we have implemented a generic orchestration frame-
work that allows configuration state to be generated program-
matically via a Python3 API. The orchestration framework can
derive forwarding plane and traffic generation configuration
from experiments specified as Python3 objects and subse-
quently configure both the forwarding plane and the traffic
generation tools. Our testbed uses the ONOS SDN controller
to interface with the physical switches via OpenFlow 1.3.

B. Experimental Results

The security guarantees provided by MSSS rely on a syn-
chronous transmission model in which all paths have the same
end-to-end delay and negligible path delays (i.e., transmissions
are instantaneous). In this experiment, we study the implica-
tions of these assumptions for MSSS. We show that the delay
diversity of network paths, which is a natural characteristic of
real-world networks, opens up a data remanence side-channel
for an attacker to break MSSS.

Experiment Setup. Each experiment consists of a single
path switching flow between a source and destination node
connected by N = 9 disjoint paths. The flow was a bulk data
transfer of size 20 MB. The bulk data is divided to messages
of size 256 B for transmission. The multi-path switching
parameter K is set to 5 and the switching interval J is set
to to 100 ms. Two scenarios are considered where path delays
are drawn uniformly from the range [0,250] ms and the set
{0,100, 200} ms. Each of the paths also incurred 50 ms of
jitter meaning that the latency on an individual path could
randomly vary by up to 50 ms for each packet transmitted over
the path. These latency values were selected as we believe they
represent a reasonable upper bound on the amount of latency
experienced by typical Internet traffic.

Results and Discussion. Fig. 3a shows the empirical Proba-
bility Density Function (PDF) of the number of active paths in
each switching interval. A path is considered active in a given
interval if at least one share (of any packet) is traversing the
path in that interval. Ideally, in any interval, exactly K = 5
paths should be active. However, due to the diversity of path
latency, we observe that the number of active paths in this
experiment was as high as 9 (recall that N = 9). Notice that
security of MSSS relies on the assumption that there is a non-
zero probability (as a function of N and K) that the attacker
misses one of the shares of a message. This experiment clearly
demonstrates that, in this network setting, choosing any subset
of paths to eavesdrop on frequently results in capturing a share
on each of the chosen paths, even though the captured shares
may belong to different messages.

Similarly, in Fig. 3b, we have plotted the empirical PDF of
the number of switching intervals in which the shares of the

souniform == discrete souniform == discrete

0.8 7 _ vou
2 o7 » ||
0.6 % o6 / [5o
— % =05 / 1
= 7z = /
1 04 Z o4 %
- 7z s /
& Z & 77
02 Z 02 % %.
f [N N | 0.1 / /'
W=7 "5 ¢ 7 s 9 00 1 2 3 1
(a) PDF of the number of active (b) PDF of the number of switch-

paths per switching interval where ing intervals where shares of the
shares of any packet were present. same packet were present.

Fig. 3: Distribution of shares in the network (N =9, K = 5).

same message were present. Ideally, the shares of a message
should be present in the network in only one interval. However,
as can be seen from the figure, in this experiment, the shares
of a packet were present in the network for up to 4 intervals,
which significantly increases the window of opportunity for
the attacker to capture these shares. Specifically, the attacker
could eavesdrop on faster paths in one switching interval, and
then hop to slower paths which are still active in the following
interval. With a careful strategy that accounts for the delay
diversity of paths relative to the switching interval, an attacker
may be able to capture all shares of a message.

In both figures, experiments with discrete path delays
exacerbate the problem. The reason is that, in the discrete delay
experiments there is substantially more divergence across path
delays compared to the continuous delay case.

V. ATTACK ANALYSIS

In this section, our focus is on understanding the impact
of the multi-hop nature of paths on the effectiveness of
NDR attacks. We first develop a model to investigate the
effectiveness of different attacks, including NDR Attacks, in
a network with multi-hop paths. Then, we derive analytical
results for each attack, and assess whether they can benefit
from the NDR side-channel.

A. System Model

We consider a network where nodes are connected through
disjoint multi-hop paths, and the number of total disjoint paths
between a sender and receiver is N. We denote the number of
links on a path as the length of the path, L. We assume that
all disjoint paths have the same path length, L, L > 1.

We consider time as clock ticks, and assume that it takes
one clock tick for each share to traverse each link of the
network. The sender breaks the message into K < N shares
according to (K, K) secret sharing. At clock tick ¢ = 0, the
sender sends shares of the information along K random paths,
and then at each subsequent tick it selects a new set of K
paths.

B. Analysis of Attacks

In order to analyze the effectiveness of the attacks, we
compute the probability that each of the Fixed, Synchronized,

NDR Blind, and NDR Planned attackers, described in Sec-
tion III, can recover a message being sent with MSSS.

Fixed and Synchronized. The probability of capturing K
shares at tick 1 by the Synchronized and Fixed attackers can
b N

e computed as 1/ ().

NDR Blind. Let Py, (m,t) denote the probability of
capturing m shares until tick ¢ by the NDR Blind attacker.
Py (m, 1) can be computed as follows. Note that if 2K > N
and L = 2, then the NDR Blind attacker captures at least
2K — N shares at t = 1.

Pyn(m,1) =
(K)X((L—l)N—K)
%, (L=2and 0 < 2K — N <m < K)
K
or0<m<K<Z%
0, otherwise

e))

If L = 2, the probability of data recovery equals Py, (K, 1);
otherwise, when t > 1, Py, (m, t) can be computed recursively
as follows.

Pyn(m,t) = > Pon(m — 2,t = 1) X Dyin(m, z), (2)

where Dy, (m, x) denotes the probability of capturing = new
shares by the NDR Blind attacker at tick ¢ provided that m —x
shares were captured before tick ¢. This probability is given
by

K—m+zx % (L-1)N—-K+m—x

Dbln(mvx) = ((L—l)N)
K

The probability of data recovery of the NDR Blind attacker is
equal to Py, (K, L — 1) which can be computed recursively.

NDR Planned. Let P, (m,t) denote the probability that
the NDR Planned attacker has captured exactly m shares by
tick ¢. Thus, the probability of recovering a message by the
attacker is Py, (K, L — 1), i.e. the attacker captures all the
shares within the duration of transferring a message, which is
from tick 1 to tick L — 1. It is obtained that,

K N-K
M’ 0<m<KK< % or
Pyin(m, 1) = " 0<2K-N<m<K "
0, otherwise
4)

For 1 < t < L, Pyn(m,t) can be computed using the
following recursive formula,

f(m) (K7m+x) <N7K+m*r)
Pyta(m,t) = 37 Pon(m—a,t—1)x i ter 2,
N

where

_J min(m — (2K — N),K),
fm) = { min(m, K),

9K > N
ok <N - ©

=
R
o w s wN e

ery

°

®

Probability of Data Recovery
2 &
Probability of Data Recovs
> °
2 &

°

°

(a) NDR Blind (b) NDR Planned

Fig. 4: Data recovery by the NDR Blind and NDR Planned at-
tackers for a network with seven disjoint paths considering
different values of path length L. K denotes the multi-path
switching parameter.

C. Numerical Examples

In this subsection, we consider a network with N = 7 dis-
joint paths and show the impact of various system parameters
on the effectiveness of each attacker.

Fig. 4 represents the probability of data recovery by each
of the NDR Blind and NDR Planned attackers for different
values of L and K. When L = 2, the NDR Blind and
NDR Planned attackers have the same performance. Thus,
as observed in Fig. 4, they recover the message with the
same probability. Focusing in on the NDR Blind attacker first,
Fig. 4a shows that when secret sharing is not used (i.e., when
K =1 and the message is sent on a single path), the NDR
Blind attacker has a probability of around 0.14 of recovering
the message. When the path length, L, is greater than two
and the sender uses secret sharing (i.e., K > 1), the NDR
Blind attacker still has a non-zero probability of recovering
the message, but this probability is very low.

The NDR Planned attacker is much more effective as
can be seen in Fig. 4b. As path length L increases, the
probability of data recovery by the NDR Planned attacker
increases as well, such that it approaches one when L is
sufficiently large. Moreover, it can be observed that when L is
large enough, i.e., L > 3 for a network with seven paths, the
NDR Planned attacker becomes more successful in capturing
all shares as K increases.

Fig. 5 shows the effect of number of shares on the proba-
bility of recovering a single message with varying path length.
Since the Sync and Fixed attackers probe only the nodes at
distance one from the sender, their probability of recovery
does not change with path length. Moreover, as can be seen in
both Figs. 4a and 5, when the path length is greater than two,
increasing the path length does not have a significant impact
on the probability of recovery by the NDR Blind attacker.

In summary, our analysis shows an attacker that does not
intelligently attempt to exploit the side-channel is not very
effective. However, an NDR Planned attacker that strategically
exploits the side-channel is increasingly effective at capturing
enough shares to reconstruct the message as the path length
increases.

Sync & Fixed

Sync & Fixed
—— Blind
—+— Planned

°
®
®

°
=

=

°

Probability of Data Recovery

A
Probability of Data Recovery

°

Sync & Fixed Sync & Fixed

°
®
®

°
>
=

°

°

Probability of Data Recovery

Probability of Data Recovery

°

©L=5 @ L=6

Fig. 5: Effect of number of shares on the probability of
recovering a single message with varying path length in a
network with 10 paths (N = 10).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the impact of our attacks
in practical settings using the SDN-based implementation of
MSSS described in Section II.

A. Methodology

We use the network topology depicted in Fig. 6 in which
the source and destination nodes are connected by N = 10
disjoint paths, each of length L = 4, unless otherwise noted.
This presented the most natural topology for assessing how
system parameters affected goodput and percentage of recov-
ered data. The capacity of each of the emulated links in the
network was not restricted. Each experiment was conducted
on a CentOS VM in QEMU with 6 Cores and 8 GB of
RAM. These VMs are spawned from a server with Intel Xeon
Silver 4114 CPUs running at 2.20 GHz. ONOS version 1.14.0-
SNAPSHOT and Open vSwitch 2.9.2 supporting OpenFlow
1.4 are used. In each experiment, the sender sends a file to
the receiver, and the metrics are averaged over 10 runs. The
default experimental parameters, unless otherwise noted, are
file size = 10 MB, § = 100 ms, message size M = 512 B,
and K = 3. Our implementation uses sequence numbers to
identify shares belonging to the same message.

We evaluate the Fixed, Sync, Independent, NDR Blind, and
NDR Planned attackers described in Section III. The NDR
Planned Opt attacker is not included in the figures as we did not
see a real benefit over the normal NDR Planned attacker, likely
a result of real networks not entirely mirroring the attacker
analysis and model. The Independent attacker was using & =
200 ms for its switching interval. The NDR Planned and NDR
Blind attackers use § = 100 ms as their switching interval. The
attackers are implemented by adding proxy nodes before each
intermediate hop on each path of the network. Shares passing
through the proxies are captured, and attacker statistics are
computed post-run.

®
OIOIOIOIOIOIONON0
HORIOOOL®O®

Fig. 6: Depiction of the network topology used for our Mininet
evaluation with number of paths N = 10 and path length
L = 4. h nodes are the end hosts and s nodes are switches.

40.0% | e Fixed 40.0%{ —e— Fixed
T 3

£30.0%] 4~ planned £30.0%] 4+~ planned
g 4 g

& / &
g200% 200% 4

g g /
g g
o # 7
& 100% , / & 100%
L s
0.0% — 0.0%
i & 3 4 s 6 1 8 8
K
40.0% 1 —e— Fixed 40.0% 1 —e— Fixed
Sync Sy
= Ind = Ind

< —— Biing 3 —— Biind
£300%] 4+ planned £30.0%] 4+ Planned
g g
& & Y,
220.0% 220.0% o
g g /
5) 5 A 4
€ 100% \ - & 100% \ //

0.0% — — 0.0% ———— -

T2 3 4 5 6 71 8 o T2 3 5 6 71 8 9
K K

Fig. 7: Effect of the number of shares on the percentage of
recovered data with varying path length when each link has
the same 50 ms delay.

We measure the effectiveness of the NDR attacks with the
metric Percentage Recovered, defined as the fraction of total
messages that were completely reconstructed by the attacker
from the captured shares.

B. Impact of Path Length on NDR Attacks

We first study the impact of path length, L, on the attacks.
In order to isolate the path length behavior, we configure
each link to have the same constant delay of 50 ms, which
corresponds to a round trip time between USA and Europe.

Fig. 7 shows the percentage of data recovered by an
attacker employing each of the attack strategies we consider,
as a function of the number of shares, K, for different path
lengths, L. As can be seen in all 4 graphs, the Fixed, Sync,

and Independent attackers are very ineffective at recovering
messages, as expected. With K = 1, these basic attackers are
able to recover approximately 10% of the data, as a single
intercepted share is enough to fully recover the message. A
similar phenomena happens at K = 9, where an attacker
picking 9 of 10 nodes at distance 1 from the sender is likely
to pick correctly some of the time. Intermediate K values
show a very low recovery rate. The NDR Blind attacker is
not doing very well at leveraging the side-channel, regardless
of the path length. In contrast, the NDR Planned attacker is
very effective, managing to reconstruct approximately 5% to
40% of the messages sent by the sender across the range of K
values. It is worth noting that we experimented with a broad
range of latencies and found that the NDR Planned attack is
effective regardless of link latency.

Note that the recovery rate for our NDR Planned attacker is
significantly less than predicted by our analysis in Fig. 5. This
is because our analysis only considers probability of recovery
for a single message while our experiments analyze a stream
of messages and our NDR Planned attacker follows the shares
of a single message through the network. As a result, our NDR
Planned attacker misses some messages while it is focused on
collecting shares from other messages.

C. Impact of Path Delay on NDR Attacks

Our analytical model for the attackers considers only path
length and assumes all links have the same delay, which is
exactly equal to one clock tick. In real networks each link, and,
in turn, each path, has a different delay. In order to simulate
more realistic network latency, a delay is added to the first link
of the network to emulate real end-to-end delays. In addition,
jitter is applied to each message to emulate the small variations
in delay common in real networks. The delay was randomly
sampled from a continuous interval for each path. The jitter
was randomly sampled from a continuous interval for each
share sent.

In Fig. 8, we show the percentage of recovered messages
for all considered attacks, with delay introduced as explained
above. The first observation we make is that the Fixed, Sync,
and Independent attackers seem to benefit from the variability
of path delay. For example, Fig. 7b with fixed delay shows a
recovery at K = 8 of less than 5%, and at K = 9 of about 10%
for the three basic attackers, each recovering a comparable
amount of data. However, examining the equivalent plot with
varying delay, Fig. 8b, at K = 8 shows a Sync recovery rate
slightly over 5%, and at K =9 this jumps to over 20%. This
shows a significant increase in recovery over the fixed-delay
scenario present in Fig. 7. In addition, there is also a separation
between the attackers. The Sync attacker performs best, and
the Fixed attacker performs worst among the basic attackers.
Each of these attackers can clearly leverage the side-channel to
their benefit, but because the Sync attacker is switching paths
at a higher rate than the Independent attacker, it has more of a
chance to capture shares left in the network. The Fixed attacker
has no ability to choose new nodes, so is at the mercy of the
shares that travel across its set of nodes.

As in the fixed-delay scenario, the NDR Planned attacker
performs significantly better than the basic Sync, Indepen-
dent, and Fixed attackers in the majority of scenarios. For

40.0% —o— Fixed 40.0% —e— Fixed
30.0% —+— Planned

30.0% —+ Planned

20.0% 20.0%

10.0% \ "_,1// 100%1-N
L =
1+ |

Percentage Recovered
Percentage Recovered

40.0% 1 —e— Fixed 40.0% 1 —e— Fixed

30.0%7 —4— Planned 30.0%7 —4— Planned

20.0% 20.0%

Percentage Recovered
Percentage Recovered

10.0% 1 Ny 100%1 R

0.0%

@) L=6

Fig. 8: Effect of the number of shares on the percentage
of recovered data with varying path length. In addition to a
50 ms delay on each link, a randomly sampled delay from
the continuous interval [0 ms, 100 ms] is applied before the
first node and a randomly sampled jitter from the continuous
interval [0 us, 100 us] is applied on each share sent.

example, in Fig. 7c with fixed delay when K = 9 the NDR
Planned attacker recovers 20% more messages than even the
best basic attacker. When comparing this to the varying delay
scenario, where the basic attackers perform better, Fig. 8c
shows that the NDR Planned attacker still recovers 10% more
messages than the best basic attacker, even though the basic
attacker’s recovery rates have more than doubled. Despite this,
the NDR Planned attacker does worse with varying delay
than it does with fixed delay. This is likely because while
with fixed delay shares do not travel through the network in
total synchrony, they do travel in close temporal proximity to
each other, especially in comparison to the varying delay case.
This leads to a slight drop in the recovery rate of the NDR
Planned attacker under varying delay. However, there is still
an approximate 5% to 30% recovery rate for this attacker, as
shown in Fig. 8. The exception is Fig. 8a, which indicates that
if the paths in the network are short, then the recovery rate of
the NDR Planned attacker approaches that of basic attackers.

The results for the NDR Blind attacker are very similar in
both the fixed-delay and the varying delay scenarios, as well as
across K and L values. When K = 1 the NDR Blind attacker
performs similarly to the other attackers, likely because at
this point any share recovered is a fully recovered message.
However, when K begins to increase, the recovery quickly
drops and does not recover. This attacker relies on choosing
randomly from a large set of nodes, making the probability of
intercepting unique shares of the same message low.

VII. COUNTERMEASURES

In this section, we propose a mitigation technique for
NDR attacks. Afterwards, we analyze the effectiveness and
overhead of the proposed technique. Finally, we implement
this technique and present experimental results using Mininet.

A. Countermeasure Description

We first describe the key idea behind our approach to
mitigate NDR attacks. To keep information theoretic security
the only possibility is to break the message into more shares.
However, sending more shares is challenging. A naive ap-
proach would require more disjoint paths, or will use the same
K paths repeatedly which could result in reduced protection.
Increasing the number of paths without increasing the attacker
capacity (i.e., the amount of traffic they can capture) would
not be fair. Also, increasing K can be problematic as larger
values of K may increase the recovery probability. Thus, we
propose distributing shares over both fime and space instead
of just space using a random set of paths to send a K-sized
set of shares. In this section, we apply this idea to MSSS and
show how it reduces the probability of data recovery.

Recall that in MSSS the sender generates K shares and
spreads them across K disjoint paths. Given that the sender and
the attacker cannot use more than K paths at the same time, we
propose to generate more shares and spread them across both
space and time. Let H be an integer greater than one. We refer
to H as the resilience factor, a system parameter that can be
configured by the sender. Instead of (K, K) secret sharing, the
sender uses (HK, HK) secret sharing and divides the shares
into H sets of K shares, and then gradually sends these sets
of shares, one at each at consecutive clock tick. Specifically,
att = 0,1,...,H — 1, the sender node chooses K paths
uniformly at random, and then sends a share along each chosen
path. By applying the proposed countermeasure, we increase 1’
and a by H—1 and (H—1) K, respectively, which increases the
attacker’s effort dramatically. This countermeasure will have an
impact on throughput; thus, the resilience factor, H, should be
chosen to balance performance and attack resilience.

B. Countermeasure Analysis

We compute the probability of data recovery by the NDR
Planned attacker and an upper bound for the probability of
data recovery by the NDR Blind attacker. The probability
of data recovery by the NDR Planned attacker is computed
assuming that the attacker continues until all K shares of a
set are captured as described in Section III-C. If all shares are
captured at time ¢, the attacker remains at the same distance at
time ¢+ 1 to capture shares of the next set; otherwise, it probes
K random nodes which are located one link further away.

An attacker needs all shares in order to be able to recover
the message. As the last set of shares is sent at time ¢t = H —1,
after time ¢t = L + H — 2 there will no shares available on
any intermediate node. We first compute an upper bound for
the probability of data recovery by the NDR Blind attacker.
Assume that N(L — 1) > HK. If all sets of shares could
be available in the intermediate nodes at all ticks from 1 to
L + H — 2, then the NDR Blind attacker has a higher chance
of capturing a share. Therefore, the probability of capturing
m shares by tick ¢ for the NDR Blind attacker under this
assumption provides an upper bound. Let Uy, (m,t) be the
upper bound for the probability of data recovery by the NDR
Blind attacker given that N(L — 1) > HK. Uy, (m,t) can be
computed as follows,

(HK)X((L—l)N—HK)

m K—m

Ubln(m7 1) — ((L—KI)N) (& S m S K 7 (7)
0, otherwise

where e denotes an upper bound for the minimum number of
shares that the NDR Blind attacker captures at ¢ = 1. Thus, e
is equal to the maximum of (H + 1)K — (L —1)N and 0. It
is obtained that,

K
Upin(m, t) = Z Upin(m — x,t — 1) X Epp(m,x), (8)
=0

where 1 <t < L+ H — 1, and Ey;,(m,x) denotes an upper
bound for the probability of capturing x new shares by the
NDR Blind attacker at tick ¢ provided that m — x shares were
captured before tick ¢. This upper bound is given by,

(HK;m+z) % ((Lfl)NfHKerfz)

K—x
-)
(%)

Eypn(m, x) =

Next, we turn our attention to computing the probability of
data recovery for the NDR Planned attacker. Using the notation
Ppin(m,t), defined in Section V-B, the probability of data re-
covery for the NDR Planned attacker is Py, (K H, L+ H —2).
Py (m, 1) is computed according to (4), as in the case that
no countermeasure is applied. If 1 < ¢t < L+ H — 1 and
m < HK, then Ppln(m, t) can be computed as follows,

min(K,m)
Pyn(m,t) = > Pyn(m—x,t—1) X Dy (m,), (10)
=0

where Dy, (m,z) denotes the probability of capturing z
new shares by the NDR Planned attacker at tick ¢ provided
that m — = shares were captured before tick ¢. If one of
the following conditions holds, Dy, (m,x) is given by (12);
otherwise, it is zero:

Cl:2K - N <gzand (m—2)%K =0and 2K > N
C2:x<K—-—(m—-—2)%K <N-Kand2K >N (11)
C3: 2 <m%BK and m%K > 0 and 2K < N

N—=z
7(?;5), m%K =0
Dpl’n(ma 55) = (KIi(m%K—m))X(N—K+(m,%K—m))
e o) K= , m%K >0
- (12)

Moreover, P, (HK,t) can be computed as follows,

Py, (HK,t) =

szn((H—A})K,H—l)7 —
K
Ppn(HE, t — 1) + W-F t>H2K >N
K
K Pun(HK—z,t-1)(N—2
ZZEV:lK = (%)(K)7
Pon(HK,t — 1)+ t>H2K <N
K Pun(HK—z,t-1)(F°7
Zw:l l (N) (K)7
K
(13)

C. Numerical Examples

Fig. 9b represents an upper bound for the probability of
data recovery by the NDR Blind attacker and the probability
of data recovery by the NDR Planned attacker for different
values of K and L when there are seven disjoint paths from
the sender to the receiver and the proposed countermeasure is

x
R
v wN -

°

®
RN
o u s W

°
=

°
=

Probability of Data Recovery
Probability of Data Recovery

°

°

<
—_
o~ _
3

T2 3 4 H 6 7

(a) NDR Blind (b) NDR Planned

Fig. 9: The probability of data recovery by the NDR Blind and
NDR Planned attackers for a network with seven disjoint paths
and different values of path length L when the countermeasure
is applied for L > 2 (resilience factor H = L — 1).

applied with H = L — 1. Comparison of Figs. 4 and 9 shows
that the proposed countermeasure is successful in reducing
the probability of data recovery. Specifically, comparison of
Figs. 4b and 9b indicate that the proposed countermeasure
significantly reduces the probability of data recovery by the
NDR Planned attacker. Excluding the case K = N —1 =6
(discussed below), Fig. 9b shows that as L increases, the
proposed countermeasure becomes more effective. Fig. 9b
suggests that in order to achieve a specific level of protection
as L increases, the required value for parameter H needs to
increase more slowly than L.

For the case K = N — 1 = 6, Fig. 9b shows different
behavior. Here, the recovered data grows with increasing H
unlike the other cases. What happens here is that the NDR
Planned attacker will listen on K = 6 paths at the first hop. If
this attacker fails to capture all K shares in its first attempt,
then the remaining share must have been sent on the one
unprobed path. Probing this new path at the next tick is enough
to capture the remaining share. Note that the probability that
the NDR Planned attacker will not probe the same set of paths
at the next tick is (N — 1)/N which is quite high. As a result,
for the case where K = N — 1, H should grow faster than L.

For the Synchronized attacker, all shares belonging to each
set of shares are captured with probability 1/(%). Thus, the
probability of data recovery can be computed as follows.

1
Pyyn(HK,H) = T (14)

K

Fig. 10 represents an upper bound for the probability of
data recovery by the NDR Blind attacker and the probabilities
of data recovery for the NDR Planned and Synchronized
attacker for a network with parameters N =4, L =6, K = 2,
and different values of H. The value 1 for H corresponds to the
case of where countermeasure is applied and only K shares are
generated. As can be seen in Fig. 10, applying the proposed
countermeasure significantly reduces the probability of data
recovery for all three attackers. For example, the probability
of data recovery for the NDR Planned attacker is close to
one when the countermeasure is not applied. However, if it is
applied with resilience factor H = 5, the probability of data
recovery becomes more than 10 times smaller.

While the proposed countermeasure decreases the proba-
bility of data recovery, it does impose some costs/overheads

sync
—— Blind
—+— Planned

Probability of Data Recovery

Fig. 10: Effectiveness of the proposed countermeasure for
different values of H against different attackers when N = 4,
L = 6, and K = 2. Curves corresponding to the NDR
Planned and Synchronized attackers represent the probabilities
of data recovery while the curve corresponding to the NDR
Blind attacker represents an upper bound for its data recovery.

—e— MSSS with counter
—e— MSSS without coun

—e— MSSS with countermeasure
—e— MSSS without countermeasure

B

>

End-to-End Latency (tick)
N
Coding Rate

1 2 3 a 5 6 1 2 3 a H 6
H

(a) Impact on latency (b) Impact on coding rate

Fig. 11: The overhead of the proposed countermeasure with
varying resilience factor, H, in terms of end-to-end latency
and coding rate when the length of each path is 6 (L = 6)
and K = 2 compared to the case that no countermeasure is
applied (H = 1).

on the performance of the network. In order to quantify this,
we define the following metrics and examine the impact of the
proposed countermeasure.

End-to-End Latency: This is the time from when the
sender sends the first share until all shares are delivered to
the receiver. With no countermeasure, the latency is L. This
value increases by one for any additional K -sized set of shares.

Coding Rate: Coding rate is a well-known measure in
the context of coding theory. It is equal to the proportion of
information over the total data generated by an encoder. The
goodput achieved by each secret sharing scheme is directly
proportional to its coding rate. Each share generated by the
secret sharing scheme has the same size as the message. When
the countermeasure is not applied, K shares are required for
a coding rate of 1/K. When the proposed countermeasure is
applied, H K shares are sent so the coding rate is 1/(HK).

Fig. 11 represents the end-to-end latency and coding rate
for MSSS considering different values of H. Note that H = 1
corresponds to the no countermeasure case. As observed in
Fig. 11, the end-to-end latency increases with increasing H,
making the communication more secure, but increasing over-
head. Moreover, the coding rate decreases with increasing H,
which leads to a decrease in goodput for increased protection.

—e— Attacker

No Attacker
—¥— Attacker with Countermeasure
—+— No Attacker with Countermeasure

Goodput (Mbps)
o

Fig. 12: Effect of the attacker and number of shares on goodput
when L = 3, with and without the proposed countermeasure
(H = 2), in a fixed scenario with 2 ms delay between each
node. The sender’s § = 4 ms and the attacker’s § = 8 ms. File
size is 1 MB.

D. Implementation of Countermeasure

To evaluate our countermeasure experimentally, we added
it to our SDN-based implementation of MSSS described in
Section VI. We first examined the impact the countermeasure
has on performance. Fig. 12 shows the goodput when varying
the number of shares, K, both with and without the counter-
measure. As can be seen, the goodput without the counter-
measure is significantly higher than with the countermeasure.
This is a consequence of having (HK) shares per message,
and having to wait § time for each message. We also observe
that the attacker does not significantly impact goodput.

The goal of the countermeasure is to limit the attacker’s
ability to capture enough shares to recover messages. Fig. 13
shows the recovery of data across L values, with and without
the countermeasure implemented. What should immediately
be apparent is that recovery is significantly lower with the
countermeasure implemented. For instance, without the coun-
termeasure at L = 3, Fig. 13a shows a recovery rate for the
basic Fixed, Sync, and Independent attackers of approximately
10% at K =1 and K = 9. The NDR Planned attacker shows
a recovery rate across the different K values of about 5% to
30%. In comparison, when looking at the same experimental
parameters, but with a countermeasure of H = 2 in Fig. 13b,
all attackers show a recovery rate of, at most, 2%.

Next we see how recovery rate varies with path length,
L. Without our countermeasure, the recovery rate at L = 6 is
similar to that at L = 3. However, with the countermeasure, the
NDR Planned attacker shows a higher recovery rate (by about
15%) at L = 6 compared to L = 3. In either case, the basic
attackers have almost no ability to recover messages. What this
demonstrates is that the countermeasure parameter, H, must
be adjusted with the path length, L, in order to minimize the
ability of the attacker to recover messages. Note, however, that
the defender still benefits from implementing a countermeasure
against all attackers, even with the lowest H value of 2.

E. Discussion

Here we discuss additional considerations for our coun-
termeasure. Although the proposed countermeasure provides
improved protection, as our results show, there are challenges
to its implementation in real networks. In a real network, links
may have different latencies and other traffic will be traversing
nodes in the paths, causing latency variations. A resourceful

attacker could try to overload nodes by generating heavy traffic
and thus delay shares in the network longer and nullify the
impact of our countermeasure. If such a situation occurs,
the buffer of an affected node may contain multiple shares
belonging to different sets, which can be captured together by
probing that node.

The proposed countermeasure also has negative impact on
performance measures like end-to-end latency and goodput.
Therefore, choosing an appropriate value for the parameter
H is important to provide a suitable trade-off between the
probability of data recovery and the performance of network.
This raises the question: what is the minimum value for H
needed to achieve a desired level of protection? Parameter
H should scale with L since each network hop provides an
opportunity for attacker to capture shares. Thus, the heuristic
approach would be to set the value of H to L. As can be
seen in Figs. 4 and 9, applying the proposed countermeasure
with H = L — 1 to a network with N = 7 decreases
the probability of data recovery for all attackers significantly.
For example, the probability of data recovery by the NDR
Blind attacker becomes negligible, less than 0.01 for L > 3.
Using Egs. (8), (13), and (14), we can compute an upper bound
for the probability of recovery by the NDR Blind attacker and
the exact probabilities of recovery by the NDR Planned and
Synchronized attackers in the ideal system model. Thus, a
more rigorous guideline is to compute the exact recovery
probability or its upper bound, depending on the target attacker,
for different values of H starting from H = 2 and increasing
H until the recovery probability becomes as low as desired.

In real networks, links usually have different latencies.
Moreover, queuing and processing delays occur at each node.
Although all of these factors affect the protection provided by
the countermeasure and, thus, the appropriate value of H in
real networks, we can select H based on the numerical results
for the ideal system model where values of parameters NV, K,
and L are the same as those in real network. If paths do not
have the same length, a conservative strategy would be to set
H to the number of intermediate nodes in the longest path.

VIII. GENERALITY

In this work, we focused on a specific scheme to be able to
provide detailed experiments and analytical results. However,
the new class of vulnerabilities that we discussed in this paper
is general and attacks similar to ours apply to other schemes
that assume transfer atomicity. Since the threat models of these
schemes are not all the same, the precise interpretation of
the attack may vary. Having said that, because the MSSS is
the most featureful of such schemes, the attacks presented
naturally apply to other schemes.

Previous schemes can be categorized in two dimensions:
whether or not the scheme uses secret sharing (i.e., a message
is broken into multiple shares), and whether or not the schemes
dynamically switches the path(s) used for communication.
Since it does not make sense to send multiple shares on the
same path, all secret-sharing based schemes also use multi-
path routing, and all schemes without secret sharing use a
single path for each message. Thus, there are four possibilities,
depicted in Fig. 14. Our analysis so far has been focused on
the top-left quadrant. In this section, we discuss the generality

40.0% 1 —e— Fixed 40.0% —e— Fixed
= Ind
—+— Blind
30.0% —+ Planned

= Ind
—+— Blind
%1 —+— Planned

2
2

20.0%

// -
—— 009 L=

20.0%

Percentage Recovered
Percentage Recovered

(
[
|

40.0%{ —o— Fixed 40.0% —e— Fixed
= Ind
—+— Blind
30.0% —+— Planned

-= Ind

—+— Blind

%1 —+— Planned #
/

Percentage Recovered
S S
g 2

Percentage Recovered
s

3
=2

— 0.0% L= L

g
g

) 1 2 3 a 5 6 7 8 9

(b) L = 3, With Countermeasure

—~
S
N—
~
Il
90
z
o
0
Q =
=1
=
=
[¢]
=
=)
[
o
izl
=1
=
(¢}

5 6 7 8 5 1 2 3 2 5 6 7 8)

(d) L = 4, With Countermeasure

40.0%{ o Fixed 0.0%

30.0% —+ Planned

2
2
H

20.0%

/ 10.0%

20.0% S

Percentage Recovered
\
Percentage Recovered

10.0%

40.0%] o Fixed a00% e Fixed
= Ind
—— Blind
30.0% —+— Planned

2

20.0%
2

/

Percentage Recovered
Percentage Recovered
s
g

2

jd / 100% 2

= 0.0% —
4 5 6 7 8 9 1 2 3 4 s [3 7 8 9

(f) L = 5, With Countermeasure

0.0%
1

(e) L = 5, No Countermeasure

g
2

= — R ——

5 6 7 8 [) 1 2 3 4 6 7 8 9

(g) L = 6, No Countermeasure (h) L = 6, With Countermeasure

Fig. 13: Effect of the countermeasure and number of shares on percentage of recovered data with varying path length. Fixed
scenario with 2 ms delay between each node. The sender’s § = 4 ms and the attacker’s § = 8 ms. File size and the resilience

factor, H, are set to 1 MB and 2, respectively.

More claimed resilience

Secret-Sharing & Multi-Path No Secret-Sharing & Single-Path

Path Switching
(Dynamic)

The scheme we have attacked:
MSSS [28]

Generality:
[21], [26], [34], [39]

Fixed Path(s)
(Static)

Generality:

[10], [13]. [22], [35], [36] Traditional networks

More claimed resilience

Fig. 14: Previous work and the generality of our attack.

of our work for the top-right and bottom-left quadrants. The
bottom-right quadrant would just be a traditional network.

Secret Sharing & Multi-Path with Fixed Paths: Schemes
proposed in [10], [13], [22], [35], [36] leverage the secret
sharing scheme and multi-path routing, but only on a fixed set
of paths (static). They are vulnerable to our attacks because in
essence they are a weak form of MSSS in which the switching
interval is co. In fact, their vulnerability is more severe because
as soon as the set of paths is revealed to an attacker, the attacker
do not need to switch nodes anymore and can capture the rest
of the flow with probability 1.

No Secret Sharing & Single-Path but Path Switching:
Schemes proposed in [21], [26], [34], [39] do not use secret
sharing and send each message via a single path, but they
use path switching for resilience. They thus correspond to the
special case of K = 1 in our experiments/analyses. They are
thus vulnerable to the NDR side-channel we uncovered herein.

Finally, while we presented our attacks on an SDN im-
plementation for convenience, neither our attacks, nor our
countermeasure, is limited to SDNs. In fact, any network that
can implement the schemes proposed in the literature can
indeed implement our countermeasure as well, because it only
relies on increased shares and timing of share transmission.

IX. RELATED WORK

We discussed the most relevant previous work in Section
VIII. Here, we briefly mention other, tangentially-related pre-

vious work for the sake of completeness.

Switching Other Network Identifiers: A great variety
of work [37], [8], [38], [41], [31], [32], [40], [3], [20] has
looked at switching among different IP addresses, ports, and
other identifiers in an attempt to prevent attacks which require
network reconnaissance [3], [20], reduce the amount of in-
formation an attacker gains about the network [37], [8], [31],
[32], [40] or make it hard to target a particular flow [38], [41].
However, none of these approaches attempt to protect the data
itself, and are thus out of scope for our work.

Data Remanence Attacks: Data remanence in the context
of storage devices has been studied extensively in the literature.
We refer the reader to the vast body of literature on that topic
[18], [19], [4], [5]. Networks are also vulnerable to memory
data remanence attacks as memory is a main component of
switches. Cao et al. [7] show that a malicious application can
exploit the lack of consistency checking for buffer IDs, which
allows an attacker to hijack the buffered packets, implement-
ing a memory data remanence attack, in essence. Our work
introduces another kind of data remanence attack that is not
based on the memory data remanence property. We exploit the
data that is being transferred along network paths.

X. CONCLUSION

In this paper, we uncovered a new side-channel vulnera-
bility, called Network Data Remanence (NDR), that can be
used to attack secret sharing-based schemes. We focused on
the most featureful of such schemes, which provides secret
sharing, multi-path routing, and path switching, and illustrated,
via testbed experiments, Mininet experiments, and analytical
results, that their guarantees can indeed be broken by the new
NDR side-channel. Moreover, we proposed a countermeasure
to spread shares over both time and space, and implemented
and evaluated our countermeasure. Finally, we discussed the
generality of our attack and proposed countermeasures for
other schemes that provide fewer features.

[1]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

REFERENCES

H. Ahmadi and R. Safavi-Naini, “Multipath private communication: An
information theoretic approach,” arXiv preprint arXiv:1401.3659, 2014.

——, “Private message transmission using disjoint paths,” in Inter-
national Conference on Applied Cryptography and Network Security,
2014, pp. 116-133.

E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for
moving target defense,” in Security and Privacy in Communication
Networks, A. D. Keromytis and R. Di Pietro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 310-327.

B. Albelooshi, K. Salah, T. Martin, and E. Damiani, “Experimental
proof: Data remanence in cloud vms,” in 2015 IEEE 8th International
Conference on Cloud Computing, 2015, pp. 1017-1020.

X. Bellekens, G. Paul, J. M. Irvine, C. Tachtatzis, R. C. Atkinson,
T. Kirkham, and C. Renfrew, “Data remanence and digital forensic
investigation for cuda graphics processing units,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2015, pp. 1345-1350.

G. R. BLAKLEY, “Safeguarding cryptographic keys,” in 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK), 1979,
pp. 313-318.

J. Cao, R. Xie, K. Sun, Q. Li, G. Gu, and M. Xu, “When match fields do
not need to match: Buffered packet hijacking in sdn,” in NDSS, 2020.

S.-Y. Chang, Y. Park, and A. Muralidharan, “Fast address hopping at the
switches: Securing access for packet forwarding in sdn,” in IEEE/IFIP
Network Operations and Management Symposium, 2016, pp. 454-460.

R. Cramer, I. Damgard, and U. Maurer, “General secure multi-party
computation from any linear secret-sharing scheme,” in Advances in
Cryptology — EUROCRYPT 2000, B. Preneel, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 316-334.

R. A. Dilruba, “Quantum-safe switch-controller communication in
software-defined network,” Master’s thesis, Science, 2017.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” /EEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4539-4551,
2010.

D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message
transmission,” Journal of the ACM (JACM), vol. 40, no. 1, pp. 1747,
1993.

S. Dolev and S. Tzur-David, “A method for establishing a secure
private interconnection over a multipath network,” European Patent
EP3146668A1, Mar. 2017.

O. N. Foundation. (2012) Openflow switch specification. [Online].
Available: https://www.opennetworking.org/wp-content/uploads/2014/
10/openflow-spec-v1.3.0.pdf

P. R. Gallagher, “A guide to understanding data remanence in automated
information systems,” 1991.

D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in International Confer-
ence on Applied Cryptography and Network Security. Springer, 2018,
pp. 83-102.

J. Granjal, E. Monteiro, and J. S4 Silva, “Security for the internet of
things: A survey of existing protocols and open research issues,” IEEE
Communications Surveys Tutorials, vol. 17, no. 3, pp. 1294-1312, 2015.
P. Gutmann, “Data remanence in semiconductor devices.” in USENIX
Security Symposium, 2001, pp. 39-54.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: Cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, p. 91-98, 2009.

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: Transparent moving target defense using software defined
networking,” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, 2012, p. 127-132.

——, “Formal approach for route agility against persistent attackers,”
in Computer Security — ESORICS 2013, J. Crampton, S. Jajodia, and
K. Mayes, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 237-254.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[35]

[36]

(371

[38]

[40]

[41]

W. Lou and Y. Kwon, “H-spread: A hybrid multipath scheme for
secure and reliable data collection in wireless sensor networks,” IEEE
Transactions on Vehicular Technology, vol. 55, pp. 1320 — 1330, 2006.

B. Moller, T. Duong, and K. Kotowicz, “This poodle bites: exploiting
the ssl 3.0 fallback,” Security Advisory, 2014.

A. Networks. Aruba 2930f switch series. [Online]. Available:
https://www.arubanetworks.com/assets/ds/DS_2930FSwitchSeries.pdf

S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Commu-
nications Security, P. Ning, S. Qing, and N. Li, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 529-545.

Qi Duan, E. Al-Shaer, and H. Jafarian, “Efficient random route mutation
considering flow and network constraints,” in /IEEE Conference on
Communications and Network Security (CNS), Oct 2013, pp. 260-268.

E. Rescorla and T. Dierks, “The transport layer security (tls) protocol
version 1.3, 2018.

R. Safavi-Naini, A. Poostindouz, and V. Lisy, “Path hopping: An
mtd strategy for quantum-safe communication,” in ACM Workshop on
Moving Target Defense, 2017, pp. 111-114.

——, “Path hopping: An mtd strategy for quantum-safe communica-
tion,” in ACM Workshop on Moving Target Defense, 2017, pp. 111-114.

A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

L. Shi, C. Jia, S. Lii, and Z. Liu, “Port and address hopping for active
cyber-defense,” in Pacific-Asia Workshop on Intelligence and Security
Informatics, 2007, pp. 295-300.

M. Sifalakis, S. Schmid, and D. Hutchison, “Network address hopping:
a mechanism to enhance data protection for packet communications,”
in IEEE International Conference on Communications, 2005, pp. 1518—
1523.

T. Simonite, “Nsa says it “must act now” against the quantum comput-
ing threat,” 2016.

E. Talipov, D. Jin, J. Jung, I. Ha, Y. Choi, and C. Kim, “Path hopping
based on reverse aodv for security,” in Asia-Pacific Network Operations
and Management Symposium, 2006, pp. 574-577.

Wenjing Lou, Wei Liu, and Yuguang Fang, “Spread: enhancing data
confidentiality in mobile ad hoc networks,” in IEEE INFOCOM 2004,
vol. 4, 2004, pp. 2404-2413 vol .4.

Wenjing Lou and Yuguang Fang, “A multipath routing approach for
secure data delivery,” in 2001 MILCOM Proceedings Communications
for Network-Centric Operations: Creating the Information Force (Cat.
No.01CH37277), vol. 2, Oct 2001, pp. 1467-1473 vol.2.

L. Zhang, Y. Guo, H. Yuwen, and Y. Wang, “A port hopping based dos
mitigation scheme in sdn network,” in IEEE International Conference
on Computational Intelligence and Security (CIS), 2016, pp. 314-317.

L. Zhang, Z. Wang, K. Gu, F. Miao, and Y. Guo, “Transparent
synchronization based port mutation scheme in sdn network,” in The 5th
International Conference on Computer Science and Network Technology
(ICCSNT), 2016, pp. 581-585.

L. Zhang, Q. Wei, K. Gu, and H. Yuwen, “Path hopping based sdn
network defense technology,” in IEEE International Conference on
Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD), 2016, pp. 2058-2063.

Z. Zhao, D. Gong, B. Lu, F. Liu, and C. Zhang, “Sdn-based double
hopping communication against sniffer attack,” Mathematical Problems
in Engineering, 2016.

Z. Zhao, F. Liu, D. Gong, L. Chen, F. Xiang, and Y. Li, “An sdn-based
ip hopping communication scheme against scanning attack,” in /EEE

International Conference on Communication Software and Networks
(ICCSN), 2017, pp. 559-564.

