
The Thundering Herd: Amplifying Kernel
Interference to Attack Response Times

Samuel Mergendahl∗ Samuel Jero∗ Bryan C. Ward∗‡1 Juliana Furgala∗ Gabriel Parmer† Richard Skowyra∗
∗MIT Lincoln Laboratory, †The George Washington University ‡Vanderbilt University

Abstract—Embedded and real-time systems are increasingly
attached to networks. This enables broader coordination beyond
the physical system, but also opens the system to attacks. The
increasingly complex workloads of these systems include software
of varying assurance levels, including that which might be
susceptible to compromise by remote attackers. To limit the
impact of compromise, µ-kernels focus on maintaining strong
memory protection domains between different bodies of software,
including system services. They enable limited coordination
between processes through Inter-Process Communication (IPC).
Real-time systems also require strong temporal guarantees for
tasks, and thus need temporal isolation to limit the impact of
malicious software. This is challenging as multiple client threads
that use IPC to request service from a shared server will impact
each other’s response times.

To constrain the temporal interference between threads, mod-
ern µ-kernels often build priority and budget awareness into the
system. Unfortunately, this paper demonstrates that this is more
challenging than previously thought. Adding priority awareness
to IPC processing can lead to significant interference due to the
kernel’s prioritization logic. Adding budget awareness similarly
creates opportunities for interference due to the budget tracking
and management operations. In both situations, a Thundering
Herd of malicious threads can significantly delay the activation of
mission-critical tasks. The Thundering Herd effects are evaluated
on seL4 and results demonstrate that high-priority threads can
be delayed by over 100,000 cycles per malicious thread. This
paper reveals a challenging dilemma: the temporal protections
µ-kernels add can, themselves, provide means of threatening
temporal isolation. Finally, to defend the system, we identify
and empirically evaluate possible mitigations, and propose an
admission-control test based upon an interference-aware analysis.

I. INTRODUCTION

Timing predictability and correctness is a paramount design
consideration in many embedded systems, cyber-physical sys-
tems, and safety-critical systems. Many such systems include
hard real-time (HRT) tasks, where unexpected jitter or latency
can cause deadline misses that can have catastrophic physical
consequences. It is therefore imperative to maintain temporally
correct execution for such tasks, even while processing other
workloads with less stringent temporal requirements. This
fundamental challenge has motivated over four decades of
research dating back to seminal results such as the sporadic

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion unlimited. This material is based upon work supported by the Department
of Defense under Air Force Contract No. FA8702-15-D-0001 and the Na-
tional Science Foundation under Grant CPS-1837382. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Department of Defense
or the National Science Foundation.

1Work conducted at MIT Lincoln Laboratory.

server [1], and up through current research on mixed-criticality
scheduling (MCS) [2], [3].

A guiding philosophy of much work on temporal budgeting
and mixed-criticality scheduling is that of temporal isola-
tion. Hard real-time safety-critical tasks should be capable
of meeting their real-time requirements even in the presence
of high demands placed on other aspects of the system. In
its original formation, the sporadic server was presented to
improve the quality of service (QoS) of aperiodic tasks while
ensuring periodic HRT tasks could still safely execute. More
recently, much work on MCS is motivated by the fact that
determining task worst-case execution times is notoriously
difficult, especially on modern complex architectures. In the
(hopefully) exceedingly rare case that high-criticality jobs
run longer than expected (e.g., due to rare microarchitectural
effects), MCS provides a means of maintaining the temporal-
correctness guarantees of high-criticality tasks.

While temporal-isolation mechanisms were principally de-
signed for reliability and QoS, they are also important for
security. Without temporal isolation, malicious actors could
trivially perform denial of service (DoS) attacks to consume
processing time needed by HRT tasks, delaying or even
preventing the execution of safety-critical tasks.

The need for temporal isolation is also evident in the sharing
of functional services. Some Operating Systems (OSes) that
focus on providing a secure execution environment for em-
bedded and real-time computation are structured as µ-kernels.
Services are implemented as user-level servers accessed by
multiple clients through Inter-Process Communication (IPC).
Fast IPC between processes is often synchronous [4] and mim-
ics the control flow of function calls, switching from the clients
to server, and back. As synchronous IPC binds potentially un-
trusting clients and servers, it is particularly security sensitive
and has a history of challenges [5]. Early performance-driven
IPC mechanisms avoided scheduler interaction on IPC, thus
eliding proper client/server accounting [6]. Pairing temporal
isolation facilities based around limited thread execution bud-
gets with synchronous IPC opened systems to budget attacks
in which clients attempt to expend a server’s budget to prevent
it servicing other clients [7], [8]. Additional improvements
to the temporal properties of synchronous IPC have included
priority-order execution of clients [7], adding priority [8], [9]
and budget [7], [8] inheritance.

This paper introduces Thundering Herd Attacks on the
synchronous-IPC and budget-management mechanisms in OS
kernels. In the classical Thundering Herd problem [10], many



threads waiting on some event are woken up but only one is
actually able to proceed, causing the other threads to consume
resources before blocking again. Similarly, in our Thundering
Herd Attacks, a large number of normal application threads
methodically use IPC facilities and carefully consume budget
in a manner that causes kernel execution commensurate with
the number of threads. Many of the mechanisms added to
ostensibly improve temporal isolation inadvertently enable this
class of attacks. Most kernels employ non-preemptive execu-
tion to control concurrency. However, when the kernel execu-
tion caused by the Thundering Herd runs non-preemptively,
long stretches of non-preemptive execution interfere with and
delay the activation of high-priority threads. This can threaten
the high-priority thread’s ability to meet deadlines.

This leaves us with what we call the system-coordination
dilemma: if we use simple IPC mechanisms, then the system
suffers from inter-client interference, thread accounting is
unpredictable, and execution is unconstrained; if we counter
inter-client interference by making IPC priority aware, then
attacks on the kernel’s priority mechanisms cause significant
interference; if we counter unpredictable system accounting
and lack of execution isolation by using budgets, then the
budget-accounting mechanisms cause significant interference.
The techniques employed to increase the intelligence of thread
coordination also lead to significant attacks. Many of these
issues are quite nuanced and not immediately obvious, espe-
cially to application engineers instead of systems researchers.
This paper therefore sheds light on this fundamental scientific
dilemma, and illustrates specific tradeoffs.

This paper first covers µ-kernel implementation background
(§II) and introduces the system threat model (§III). Then it
introduces a number of known interference issues on the IPC
interactions of the seL4 µ-kernel. These issues (§IV) make
relatively restrictive assumptions and focus on the challenges
in predictable IPC interactions when an arbitrary number of
attacking client threads harness a server. Following this, this
paper makes a number of contributions:
• In §V, we introduce Thundering Herd Attacks that cause

attacker-controlled lengths of non-preemptive kernel execu-
tion that can cause deadline misses and temporal violations.

• We quantify the impact of (§VI-C) three instances of these
attacks in seL4’s Mixed Criticality Scheduling extensions
that target the improved temporal facilities for properly
prioritizing IPC and implementing budgets.

• We identify and discuss two mitigations for our Thundering
Herd Attacks, implementing and empirically characterizing
the performance of one (§VI-D) and qualitatively examin-
ing the other (§VI-E).

• We propose an admission-control test (§VII) that deter-
mines if a system is schedulable despite the attacks.

• Finally, we discuss design options to mitigate these attacks
(§VIII) and how they may be applied in other µ-kernels.

II. BACKGROUND

To better understand the complexities of µ-kernel construc-
tion and the trade-offs they make, this section discusses the

historical designs of synchronous IPC and budgets.

A. µ-kernel Background

µ-kernels are focused on the placement of Operating System
(OS) functionality in user-level processes called “servers”
instead of in the kernel. When applications or servers wish
to harness the services provided by a server, they make the
request using Inter-Process Communication (IPC). As IPC is
on the critical path of all system service requests, a signif-
icant focus of µ-kernels is on its optimization. L4 µ-kernel
variants [11] implement IPC with synchronous rendezvous
between threads. Synchronous IPC features control flow that
mimics a function call where the client thread blocks until the
server thread returns.

B. Synchronous IPC: Optimization and Predictability

There has often been a tension between performance and
timing predictability in µ-kernel design. Liedtke’s L4 [4]
innovated synchronous IPC paths with overheads close to
those of the hardware by avoiding software overheads such
as scheduling, and data queuing. A client requesting a service
from a server would directly switch to the server (and directly
back to the client on return) without executing scheduler logic.
This had a negative side-effect of introducing inaccuracy into
execution time tracking and prioritization. During an IPC,
execution is accounted to the client and the server executes
at the client priority unless a timer interrupt updates the
scheduler. In this case, IPC execution from the timer tick
onward is accounted to the server, at its priority. The overhead
of invoking the scheduler during IPC is non-negligible –
imposing more than a 30% slowdown [6] – but it increases
system predictability.

The core questions for predictable IPC using synchronous
rendezvous between threads are: (1) which priority is used
for the server, and (2) which thread’s budget should be used?
These decisions are complicated by the need for predictable
resource-sharing protocols. The need for these protocols is due
to higher-priority clients that request service from a server
while it is already servicing a lower-priority client. This
contention on the server thread2 requires kernel queueing of
client service requests. A key design of L4 is that the threads
themselves are queued, rather than the data. This removes
the need for memory allocation on the critical IPC path, but
requires a queueing discipline that affects predictable service.

Modern L4 variants resolve the contention issue by either
enabling the server to inherit the priority of all client threads,
or avoiding inheritance and requiring system designers to
carefully choose server priorities as the ceiling of all clients.
Priority inheritance can be difficult to implement, and variants
that use it often rely on the scheduler to choose the highest-
priority thread and walk through its (sometimes transitive)
dependencies to find an active thread to execute.

2We discuss contention on the server thread for simplicity, despite IPC
endpoints that act as a level of indirection between client and server threads
being a popular current design [8], [9], [12].



C. Rate-limiting Policies and Synchronous IPC

Systems must often constrain the execution of low-
assurance code to prevent it from unduly interfering with
other functionalities. Budget-driven servers3 are a traditional
mechanism for limiting execution interference over time. For
example, deferrable servers [1] limit execution over fixed
windows of time. A thread’s budget has an initial value, and
the budget is depleted corresponding to a thread’s execution.
When budget is exhausted, the thread is suspended awaiting
replenishment. A replenishment policy determines when the
budget is increased for a thread. For example, deferrable
servers replenish up to the initial budget value periodically.

IPC between threads complicates budget-management pol-
icy. When a server computes for a client, it can use its own
budget, or it can inherit the budget of the client (a relationship
that can be transitive). The former can lead to budget attacks,
where a client might aim to expend a server’s budget, thus
delaying (until replenishment) the server from servicing other
(perhaps latency-sensitive) clients. The latter requires us to
define a policy for when the client provides insufficient budget
to complete the execution of the server’s functionality.

D. seL4 IPC and Rate-limiting Policies

seL4 has a number of design decisions that represent trade-
offs between IPC efficiency, predictability, and the functional
verifiability of the kernel code-base [13].
Mutually exclusive kernel execution. One important design
consideration is that kernel execution is not concurrent nor
parallel (i.e., a single sequential execution flow executes kernel
logic at a time). This makes functional verification possible
and in practice means that the kernel executes with interrupts
disabled (i.e., it is non-preemptible). On multicore systems,
it executes within a lock (i.e., a big kernel lock). This lock
is a demonstrated attack vector [14] whereby computation on
one core can delay processing on another core. In this paper
we focus on a single core; however, because seL4 uses a big
kernel lock and our attacks target kernel computation within
that lock, our attacks apply equally to the multicore case.

There is a tension that exists between the mutually exclusive
execution of the kernel and kernel operations that execute
for a potentially unbounded number of iterations [15] (e.g.,
revocation of capabilities). seL4 uses preemption points to
solve this, whereby kernel execution will back out of a loop
after a fixed number of iterations and process any pending
interrupts. The thread resumes the loop where it left off. This
effectively adds controlled and explicit kernel preemptions.
Server contention queuing and priority. Clients that use
IPC to request service from a server awaiting IPC are queued.
The waiting server may be currently executing a request or
blocked on another operation. seL4’s default policy uses FIFO
queueing of these client threads. This FIFO order does not
represent a priority-sorted order, but it does guarantee client
progress. Each client must only wait for a fixed number of
threads before it receives service. Servers do not inherit client

3“Servers” here refers to the logic associated with the budget. To disam-
biguate, we’ll refer explicitly to budgets and budget management.

priorities. Therefore the system designer must carefully assign
priorities at the ceiling of the clients should predictable service
be required. Such a policy represents the Immediate Priority
Ceiling Protocol (I-PCP) [16].
Rate-limiting policy and Mixed-Criticality Extensions.
Default seL4 does not provide rate-limiting policies. However,
the seL4 MCS extensions (henceforth referred to as seL4-
MCS) [7] that are intended to replace the existing seL4
mechanisms include mechanisms and policies for budget man-
agement. Importantly, servers can be passive, inheriting the
budget (though not the priority) of client threads upon IPC.
These budgets are implemented as sporadic servers. If a budget
is depleted while executing a server, a temporal exception
activates a policy server that can decide to provide enough
budget to finish server execution, or to take other remedial
action (e.g., extending the budget to include the rest of the
server’s execution).

Additionally, seL4-MCS uses priority-sorted IPC wait
queues. This has an impact on IPC performance as it converts
a simple constant-time operation to enqueue a thread into an
iterative operation. The priority-sorted wait queues use simple
linked lists, resulting in O(n) complexity.
Thread Creation and Control. seL4’s capability system
provides the means to create and control threads. All memory
in the system is initially untyped and has to be retyped
into capabilities for use by the system, including as new
threads, known as TCB capabilities. To be usable, a thread
will probably need an IPC buffer and stack, which can also
be created from untyped memory. Hence, untyped memory is
required to create new threads in seL4.

Using the previously mentioned TCB capability, a new
thread can be started. However, to adjust the priority of this
thread, another TCB capability must be used. This second TCB
capability must have a maximum priority greater or equal to
the desired priority for the new thread. In practice, this means
that a thread with access to untyped memory and its own TCB
capability can start more threads of equal or lesser priority.

seL4-MCS extends the capability system with
SchedContext capabilities. These capabilities describe
and track the budget and period of a thread. In seL4-MCS,
a SchedContext capability must be added to each TCB
capability in order for the thread to be runnable. While the
SchedContext capability can be created from untyped
memory, configuring it requires access to a SchedControl
capability given to the root-task at boot. In practice, any
component of a system that starts new threads must either
have a copy of this SchedControl capability or be able
to issue a request to an admission-control server that can
populate the SchedContext budget and period.

III. THREAT MODEL

In this work, we consider a system where applications exist
as processes with separate threads and memory address spaces.
Some of these applications may be highly critical (i.e., a
vehicle steering application), while others may be less so (i.e.,
a vehicle infotainment system). These applications interact



Work on Behalf 
of Victim

Job Scheduled

Blocked on IPC 
Endpoint

Replenishment 
Period Budget Spent

Work for a Low-
Priority Thread Blocked on I/O Budget 

Replenished

Replenishment 
Queue Sort

Synchronous 
IPC to Server

Request I/O

I/O Fired

IPC Endpoint 
Queue Sort

Replenishment 
Processing 

Fig. 1: Legend used throughout attack examples.

with one or more shared services, which are also processes, to
accomplish their goals. These shared services could manage
hardware devices, like a timer or network interface, or they
could provide common abstractions, like buffered channels
or key-value stores. Additionally, we assume that applications
initially receive some quantity of raw memory from which to
create any resources and kernel objects they require.

Such a design is a common way to realize typical embedded
and cyber-physical systems. While a system could be designed
with all applications as threads sharing a memory address
space, such a design makes it easy for applications to interfere
with each other and modify each other’s private state, making
minimal use of the strong isolation abilities provided by a
µ-kernel. Furthermore, functionalities are increasingly being
consolidated onto shared computing platforms to reduce the
size, weight, and power (SWaP) of systems.

In some systems it may be possible to pre-plan all IPC paths,
memory pages, and other kernel objects used in the entire
system, allowing only the needed resources and memory to
be given to each process at startup (as in CAmkES [17]). This
is limited to static systems, where the resources required by
all components can be easily determined. For more dynamic
systems, such as one built on top of an OS Patina [18],
or systems that integrate components from different vendors,
this kind of determination may be impractical or impossible.
Instead, each component can be assigned a limited amount of
raw memory from which to create the kernel objects (threads,
IPC endpoints, etc.) and memory pages it needs, with the limit
on that memory chosen to protect the rest of the system.

The dynamic behaviors of processes includes the creation of
an a-priori unknown number of threads. As such, we assume
the use of execution budgets and admission-control tests on
all threads. Such tests are often permissive in the admission
of threads at the lowest priority as they generally have limited
interference with higher-priority threads.

We consider an attacker who has compromised a low-
assurance process (e.g., code that is not certified or fully
trusted) and seeks to interfere with mission-critical processing.
The attacker cannot directly communicate with these critical
processes, but seeks to influence them indirectly via shared
servers, thread-execution interference, or the µ-kernel itself.

While assuming that a malicious attacker has compromised
part of the system might be considered admitting defeat at the
outset, experience shows that stopping all compromise across
a system is effectively impossible. Formal verification ap-
proaches have provided functional verification of kernels [12],
which increase the barrier for attacks on the system. How-
ever, user-space processes, shared services, and non-functional
properties (e.g., timing) remain vectors for potential attacks.

time

HPI

Server
Thread

Victim
Thread

Malicious
Thread 1

Malicious
Thread 2

Malicious
Thread n

Lowest 
Priority

Highest 
Priority

Fig. 2: FIFO Endpoint Flood Interference example schedule.

Such attacks can be conducted via a number of possible
vectors, such as a remote attacker exploiting a vulnerability
and hijacking control, or a software supply-chain exploitation
in which an attacker may be able to compromise the code
provided by a vendor. The latter has been used effectively
by attackers in non-real-time domains, such as the recent
SolarWinds attack [19] and the 2017 NotPetya attack [20].

Thundering Herd Attacks can be especially effective if the
malicious process knows when the victim thread will activate
so that interference can be created at that point. For this, an
attacker could use previous approaches to reverse-engineer the
activation timing of high-priority threads [21]–[23].

Finally, we assume that the other components in the system,
namely the µ-kernel, the high-assurance applications, and any
shared services, are benign and uncompromised.

IV. TRADITIONAL IPC INTERFERENCE

In this section, we describe a series of well-known,
synchronous-IPC-based interference issues that delay high-
priority tasks that use shared services. These issues serve as the
motivation for the mechanisms that are exploited by our Thun-
dering Herd Attacks in §V. In particular, though the academic
community has introduced these issues previously, in order to
fully understand the system-coordination dilemma that drives
our Thundering Herd Attacks, we provide a detailed analysis
of these relevant interference issues known by the community.
For each interference issue, we provide an overview of the
issue, describe the issue in detail, and finally, discuss existing
mitigations. Moreover, we later quantify the negative effect of
these interferences in §VI.

A. Overview

In order to create these interferences, we leverage a set
of low-priority threads to cause a high-priority shared server
to perform work on behalf of low-priority threads, instead
of either a) working for the high-priority victim task or b)
scheduling the high-priority victim task itself. We consider
any such work that the server executes on behalf of a low-
priority thread to be high-priority interference (HPI). Note
that, following the discussion in §II-B, we assume that the
shared server is executing at a higher priority than any client.
Lastly, for each attack example, we refer the reader to Fig. 1
for the notation found in each figure.



time

Server
Thread

Victim
Thread

Malicious
Thread 1

Malicious
Thread 2

Malicious
Thread n

HPI

Lowest 
Priority

Highest 
Priority

Fig. 3: Priority Ceiling Processing Interference example schedule.

B. FIFO Endpoint Flood Interference

The first HPI we describe is the FIFO Endpoint Flood Inter-
ference discussed by Liedtke, et al. almost 25 years ago [24].
We depict this in Fig. 2. In this HPI, a set of low-priority
threads all make synchronous IPC requests to a currently
blocked shared server before a high-priority victim task also
makes a synchronous IPC request. If the IPC endpoint queue
is a first-in, first-out (FIFO) queue, as in seL4 and other
common µ-kernels, then this forces the shared server to receive
and process the (low-priority) requests from the low-priority
threads before the request from the high-priority task. This
period in which the server executes on behalf of the low-
priority threads instead of the higher-priority client is HPI.

We note that a server executing on behalf of a client
shares some commonalities, at least analytically, with exe-
cuting a critical section within a lock. In the seminal work
on the Priority Ceiling Protocol (PCP) [16], it was identi-
fied that self-suspensions within critical sections invalidate
the PCP analysis. This interference effectively exploits this
same phenomenon, and reinforces that neither critical sections
nor servers executing on behalf of a blocked client should
suspend. While seL4 has never, to the best of our knowledge,
documented that servers should never suspend, it has been part
of the informal developer knowledge in the seL4 community
for some time [25]. Additionally, we note that self suspensions
are difficult to analyze, and can have surprising consequences,
as show by Chen et al. [26] who demonstrated that many
papers on the topic going back as early as 1994 are incorrect
due to common misconceptions about suspensions.

Interference Mitigations. In order for this HPI to occur,
there must be a moment when both the victim task and the
shared server are blocked. Thus, one potential mitigation is to
either not allow the victim task or the shared server to block.
For the victim task this is often an unreasonable request, as
it may be periodically activated or block waiting on some
long-duration operation. For the shared server, this is more
reasonable, but may still be problematic, especially in the case
of a server for an I/O device, which may need to occasionally
block waiting for the I/O device to catch up. This momentary
suspension of the shared server, however, allows the lower-
priority threads the opportunity to run and queue on the
server’s endpoint, resulting in this interference.

Instead, in order to mitigate this interference, seL4-MCS
introduces priority sorting for its IPC endpoint queues. Be-
cause the victim task has higher priority than the malicious

Malicious
Thread 1

Server
Thread

Victim
Thread

Malicious
Thread 2

Malicious
Thread n

Lowest 
Priority

Highest 
Priority

time

HPI

Fig. 4: Budget Drain Interference example schedule.

threads, it will sort to the front of the IPC endpoint queue,
and eliminate this particular set of HPI.

C. Priority Ceiling Processing Interference

We now describe Priority Ceiling Processing Interference,
depicted in Fig. 3. This interference again leverages the results
from the Priority Ceiling Protocol (PCP) [16] work. However,
in this case, the IPC endpoint queue does not have to be FIFO;
it may be priority-sorted or arbitrarily ordered. Without loss
of generality, we assume a priority-sorted endpoint queue,
like provided by seL4-MCS, as that protects against the
previous FIFO Endpoint Flood Interference. Similar to the
previous FIFO Endpoint Flood Interference, the victim is a
high-priority task that performs a synchronous IPC request to
a shared server and a set of low-priority threads to introduce
interference. Again, the shared server executes at a higher
priority than all clients and we assume that it blocks, possibly
due to handling I/O.

When the shared server is blocked, the victim task can run
and perform its IPC request to the server, resulting in it being
queued on the endpoint. Now, all the low-priority threads run
and make IPC requests and queue on the endpoint. Note that
whatever order these clients run, the victim task will be sorted
to the front of the priority-ordered queue. When the server
wakes up, it will process the request from the victim task first.
However, once that request is completed, the server will go on
to process the requests from the low-priority threads instead
of allowing the high-priority victim thread to be scheduled,
because the shared server runs at a higher priority than all
its clients. Thus, this period between when the shared server
completes processing the request from the victim thread and
when that thread is actually scheduled is HPI.

Interference Mitigations. Previous studies have investi-
gated the issues with priority ceiling processing [16], and
the general recommendation is that, in order to prevent this
problem, shared-server threads should be designed to never
block. When high-priority servers do not suspend, the low-
priority threads are handled as they arrive and there is no
opportunity for a large queue to form. Although seL4-MCS
does not contain an explicit defense against this interference,
its design philosophy follows this recommendation that servers
never block, as evident in its sporadic-server design [25], [27].

D. Budget Drain Interference

Finally, we describe Budget Drain Interference, which en-
ables low-priority threads to delay a high-priority victim task



by making repeated requests to a shared server. In particular,
as discussed by Shapiro [5], low-priority threads can make
repeated requests to a shared server to drain its budget. Then,
when the victim task makes a request to the shared server, it
must wait for the server’s budget to be replenished before
its request is processed. This requires an opportunity for
the malicious threads to make many requests to the shared
server, but can have very large impacts. See Fig. 4 for more
details of this HPI. The exact HPI that results scales with
the replenishment period of the server’s budget. We refer to
prior work on this interference for a more exact measure of
its impact [5].

Interference Mitigations. Mitigations to this HPI include
sporadic servers as well as budget inheritance/donation sys-
tems that allow servers to use a client’s budget for process-
ing their requests. seL4-MCS includes support for passive
threads, requiring budget donation, as well as support for
sporadic servers that can track a bounded number of replen-
ishments [27].

E. Relationship to the System-Coordination Dilemma

As discussed, a variety of mitigations exist to prevent these
interferences. However, in many cases, particularly priority-
sorting IPC endpoint queues, providing sporadic servers,
and providing budget inheritance, these mitigations result
in additional complexity in µ-kernel implementations. Many
µ-kernels, including seL4-MCS, implement these additional
features to protect against these kinds of HPI.

We show next that this additional complexity can be at-
tacked, resulting in our Thundering Herd Attacks. Thus, the
system-coordination dilemma requires that a system designer
must choose between HPI from these traditional interference
issues, and HPI from Thundering Herd Attacks.

V. THUNDERING HERD ATTACKS

In this section, we introduce and describe our Thundering
Herd Attacks. These attacks target the mitigations deployed
against the traditional IPC interference issues (discussed in
§IV) to introduce additional non-preemptive kernel processing
into the system with the aim of causing schedule overruns
for high-priority tasks. We first provide an overview of these
attacks and then discuss each of them in detail.

A. Overview

We refer to these attacks as Thundering Herd Attacks
because they use many attacker-controlled threads to perform
IPC and consume budget in ways that force the kernel mecha-
nisms necessary for handling budgets and prioritized queues to
do large quantities of non-preemptive work. This kernel-level
work supersedes execution of all user-space threads, and, when
combined with a non-preemptable kernel, like seL4 (see §II),
these attacks can even supersede interrupts.

The kernel mechanisms we exploit are necessary to mitigate
the previously discussed IPC interference issues. In particular,
we leverage priority-sorted IPC endpoint queues and sorted
queues of threads waiting for budget replenishment. This

time

Victim
Thread

Attack 
Client 1

Attack
Client 2

Attack
Client n

Attack
Server

HPI

Kernel

Highest 
Priority

Lowest 
Priority

Fig. 5: Endpoint Queue Sorting Attack example schedule.

forces a system-coordination dilemma on the user: either deal
with the client-interference issues illustrated in the traditional
IPC interference issues or deploy defense mechanisms against
the traditional IPC interference issues and be exposed to our
Thundering Herd Attacks.

For each Thundering Herd attack, the attacker leverages a
set of low-priority threads. However, unlike the traditional IPC
interference issues, a shared server is no longer required. By
manipulating its own threads, the attacker can cause extended
non-preemptive kernel processing that will delay any thread or
interrupt in the system. Similar to §IV, we consider this kernel-
level processing on behalf of a low-priority thread, when the
high-priority victim thread is ready, to be HPI. We emphasize
that this is possible even when the attacker threads and the
victim thread are completely disjoint with no shared servers
or resources.

B. Endpoint Queue Sorting Attack

The first attack we describe is the Endpoint Queue Sorting
Attack. This attack takes advantage of the fact that µ-kernels,
such as seL4-MCS, often priority sort the threads blocked on
synchronous IPC endpoints. Recall from §IV-B that this is an
essential technique to mitigate the FIFO Endpoint Flood In-
terference. seL4-MCS uses a simple linked list to implement
this priority queue, making it O(n) to insert a new thread in
sorted order. Threads are added to the back of the queue and
sorted forward in increasing priority. The only requirement for
an attacker to launch this attack is the ability to either have
or create both a single endpoint and many schedulable threads
at three different priorities. This is consistent with our threat
model as a malicious thread may spawn other threads. We
reiterate that both the shared server and its clients in this attack
can be attacker controlled tasks of low priority and disjoint
from the rest of the benign system.

The Endpoint Queue Sorting Attack works as shown in
Fig. 5. First, the attacker finds or creates an IPC endpoint and
creates a server thread to listen on this endpoint. This thread
should have the lowest priority. Then the attacker iteratively
starts a series of attack threads with the middle priority
and causes them to perform a synchronous IPC on the IPC
endpoint. This generates a long queue of threads on the end-
point, but without any sorting as they are added. The attacker
then creates another thread with its higher priority that will



time

Victim
Thread

Attack 
Thread 1

Attack
Thread 2

Attack
Thread n

Kernel

HPI

Attack
Thread 3

Highest 
Priority

Lowest 
Priority

Fig. 6: Replenishment Queue Sorting Attack example schedule.

repeatedly perform a synchronous IPC on the IPC endpoint.
When this occurs, the kernel will sort this attacker thread to the
front of the endpoint queue. At this point, the attacker’s server
thread runs, handling the attacker’s higher-priority thread and
allowing the attacker’s higher-priority thread to run again. The
higher-priority thread will immediately make another IPC call
which will force it to be sorted to the front of the endpoint
queue again. When the high-priority victim thread becomes
runnable, often as a result of an interrupt, it will be delayed
due to the kernel non-preemptively sorting the endpoint queue,
resulting in HPI.

Attack Mitigations. Because the kernel uses a linked list
for its priority queue, insertion is O(n). One way to mitigate
this attack would be to use a different data structure with
smaller insertion complexity for the endpoint priority queues.
For example, a red-black tree would offer O(log(n)) worst-
case performance against our attack, which could reduce the
impact of the attack, but not eliminate it altogether (see §VI).

Another option would be for the kernel to maintain a
separate queue for each priority level on each IPC endpoint
(similar to the plist data structure found in Linux [28]). If
there were a separate queue for each priority, there would be
no need to sort the queues, which would eliminate the vector
for this attack. With no queues to sort, insertion would again
be O(1), eliminating the HPI caused by the Endpoint Queue
Sorting Attack at the cost of a small amount of memory.

C. Replenishment Queue Sorting Attack

Next we introduce the Replenishment Queue Sorting Attack.
This attack leverages the fact that when a thread expends its
budget, it is placed on a queue of pending replenishments.
Replenishments are essential to budgets which, as discussed
in §II, are critical to constrain the execution of low-assurance
threads and prevent their interference with other threads.

seL4-MCS implements replenishment as set of replenish-
ment queues, one for each core, with each queue sorted based
on soonest period expiration (i.e., the thread that will be
replenished soonest). In seL4-MCS these are, again, imple-
mented as priority-ordered linked lists, making insertion of
new threads O(n). As a result, we can linearly increase the
computation required to enqueue a thread by increasing the
length of this queue. The only requirements for an attacker are
the ability to either have or create many schedulable threads at

time

Victim
Thread

Attack 
Thread 1

Attack
Thread 2

Attack
Thread n

Kernel

HPI

Attack
Thread 3

Highest 
Priority

Lowest 
Priority

Fig. 7: Replenishment Wakeup Processing Attack example schedule.

the same priority and to have some control over their budgets
and periods. Note that this attack does not rely on IPC.

The Replenishment Queue Sorting Attack works as shown
in Fig. 6. The attacker creates and runs a large number of
attack threads that execute infinite loops to spend their budgets
and be queued in the replenishment queue. The periods of
these threads, however, are carefully chosen. Since seL4-
MCS inserts a new thread at the front of the replenishment
queue and then sorts it towards the back, inserting threads
with longer periods results in more sorting while threads with
shorter periods are O(1). As a result, each of the attack
threads should have a shorter period than the one before it,
thus generating a large replenishment queue without sorting.
Finally, to trigger the attack, the attacker creates and executes
a thread with a period longer than any other thread. As a result,
once this thread exceeds its budget, it will be sorted all the
way to the back of the replenishment queue. When the high-
priority victim thread becomes runnable, often as a result of an
interrupt, it will be delayed due to the kernel non-preemptively
sorting the replenishment queue, resulting in HPI.

The specifics of exactly how the replenishment queue is
sorted are immaterial to this attack. For example, if the kernel
instead inserted threads at the tail of the replenishment queue
and sorted the soonest-to-be-refilled replenishments to the
front, the attacker would initialize periods in the opposite man-
ner: the first threads would have increasingly larger periods,
with the last attack thread having the shortest period.

Attack Mitigations. As with the Endpoint Queue Sorting
Attack, potential mitigations include data structures with lower
insertion complexity (e.g., red-black trees). However, unlike
the Endpoint Queue Sorting Attack, because the Replenish-
ment Queue Sorting Attack does not target a queue sorted
by priority or leverage threads of different priorities, separate
queues per priority will not affect the outcome of this attack.
In particular, the replenishment queue is sorted based on time-
until-replenishment, not the priority of the respective thread.

D. Replenishment Wakeup Processing Attack

Finally, we introduce the Replenishment Wakeup Process-
ing Attack. Similar to the previous attack, this attack takes
advantage of the queue of pending budget replenishments
maintained by seL4-MCS. However, rather than focusing on



the sorting that occurs when a new thread is added to the
replenishment queue, this attack focuses on the processing that
occurs when threads are ready to be replenished. In particular,
this attack attempts to cause a large number of attacker-
controlled threads to be replenished at the same moment, di-
rectly prior to the execution of the high-priority victim thread.
This will cause HPI as the low-priority attacker threads are
replenished instead of running the high-priority victim thread.
The only requirements for an attacker are the ability to either
have or create many schedulable threads and to have some
control over their budgets and periods. This could be realized
by either having a copy of the SchedControl capability,
or issuing a request that is serviced by an admission-control
server to populate the SchedContext budget and period.

The Replenishment Wakeup Processing Attack works as
shown in Fig. 7. The attacker creates and runs a large number
of attack threads. These threads execute infinite loops to spend
their budgets and be queued in the replenishment queue.
However, their budgets and periods need to be carefully
chosen. In particular, the attacker must choose the budget and
period of each thread such that all threads will be replenished
at the same moment (or at least within the same timer tick).
This moment when all the threads need to be replenished
is chosen to be just before the high-priority victim thread
is ready. As a result, when the high-priority victim thread
becomes runnable, often as a result of an interrupt, it will
be delayed due to the kernel non-preemptively processing the
replenishment queue, resulting in HPI.

Attack Mitigations. The Replenishment Wakeup Process-
ing Attack appears to illustrate a fundamental instance of the
system-coordination dilemma. As discussed in §II, kernel
processing of replenishments is fundamental to proper en-
forcement of temporal budgets. Moreover, as we will see in
§VI, if a system designer deploys a logarithmic data structure
to alleviate the Replenishment Queue Sorting Attack, such
a logarithmic data structure will increase the effect of the
Replenishment Wakeup Processing Attack. Namely, while the
logarithmic data structure decreases insert processing from
O(n) to O(log(n)), it also increases deletion from O(1) to
O(log(n)).

Lastly, because the kernel processes all available replenish-
ments at once, a separate queue per priority will not mitigate
the Replenishment Wakeup Attack alone. In particular, even
if the replenishments were in different queues by priority,
the current design of the kernel requires it to process all
replenishments to avoid replenishment starvation (including
replenishments associated with low-priority threads). However,
while separate queues per priority alone would not mitigate the
attack, such an implementation could enable a new priority-
aware replenishment processing scheme in the kernel. Un-
fortunately, such a design would require significant structural
changes to the kernel (e.g., a significant redesign of most as-
pects of the system including the IPC path). Nonetheless, such
a redesign could prove fruitful, with the caveat of a careful
examination of the trade-offs of such an implementation.

VI. EVALUATION

In this section, we implement and quantify both the
synchronous-IPC-based interference issues that delay high-
priority tasks using shared services (§IV) and our Thundering
Herd attacks that introduce additional non-preemptive kernel
processing into the system (§V). We then empirically evaluate
a possible mitigation strategy for our Thundering Herd Attacks
that modifies the seL4-MCS kernel to use red-black trees to
priority sort both the IPC endpoint queues and replenishment
queues that the kernel maintains with logarithmic complexity.
Finally, we analyze the impact of another mitigation strategy
that uses a queue-per-priority data structure.

A. Experimental Setup

We implement each studied attack on seL4 (or seL4-MCS)
version 12.0.0 and quantify their impact using the popular
Zynq-7000 XC7Z020 SoC, which includes a dual-core Arm
Cortex-A9 processor running at 667 MHz and a Xilinx FPGA.
We use only a single core for this evaluation and do not
use the FPGA at all. We use gcc version 8.3.0 (Debian
8.3.0-2) for arm-linux-gnueabi-gcc to compile seL4 and
our test code. We use the on-chip performance counters to
determine overheads. Unless otherwise noted, all results are
computed from 100 iterations. Because of the high accuracy
of our testbed and test suites standard deviations are frequently
very small and may not be visible in all graphs.

B. Traditional IPC Interference Results

We implemented FIFO Endpoint Flood Interference in our
testbed using seL4 and minimal client and server applications
and report its impact in Fig. 8a. We observe that significant
impacts are possible, with a thousand low-priority threads
causing over 1 million cycles (1.5ms) of interference. Further,
as the number of low-priority threads increases we see that
HPI increases linearly. We additionally perform experiments
where the server performs different amounts of work for each
request, which we refer to as overhead. For example, with
overhead 400, the server performs approximately 400 cycles
of work for each request, while with overhead 1200 the server
performs approximately 1200 cycles of work for each request.
Thus, the imposed delay also increases linearly with respect
to the amount of work the server performs for each request.

We also implemented Priority Ceiling Processing Interfer-
ence in our testbed using seL4-MCS, which priority sorts the
endpoint queue, and report the impact of this HPI in Fig. 8b.
Much like the prior interference issue, we observe that HPI
scales linearly with both the number of low-priority threads
and the amount of work the server performs on behalf of each
client. Compared to the FIFO Endpoint Flood Interference,
we observe that this interference is slightly more powerful in
terms of the HPI from each low-priority thread.

C. Thundering Herd Attack Results

Next, we empirically evaluate the impact of the Endpoint
Queue Sorting Attack on seL4-MCS in Fig. 9a. We observe
that significant impacts are possible, with 1,000 attack threads



0 250 500 750 1000 1250 1500 1750 2000
Number of Attackers

0

1000000

2000000

3000000

4000000

5000000
Ad

di
tio

na
l D

el
ay

on
 V

ict
im

 T
hr

ea
d 

(c
yc

le
s) Overhead 0: f(x) = 1270.01x + -6761.11 (R=1.00)

Overhead 400: f(x) = 1679.19x + -6272.61 (R=1.00)
Overhead 800: f(x) = 2088.38x + -7200.79 (R=1.00)
Overhead 1200: f(x) = 2515.60x + -5101.14 (R=1.00)

Overhead 0 (50th%)
Overhead 400 (50th%)
Overhead 800 (50th%)
Overhead 1200 (50th%)

Overhead 0 (25th%)
Overhead 400 (25th%)
Overhead 800 (25th%)
Overhead 1200 (25th%)

Overhead 0 (95th%)
Overhead 400 (95th%)
Overhead 800 (95th%)
Overhead 1200 (95th%)

(a) HPI from the FIFO Endpoint Flooding.

0 250 500 750 1000 1250 1500 1750 2000
Number of Attackers

0

1000000

2000000

3000000

4000000

5000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s) Overhead 0: f(x) = 1494.66x + -6669.46 (R=1.00)
Overhead 400: f(x) = 1899.77x + -4828.37 (R=1.00)
Overhead 800: f(x) = 2302.85x + -4561.91 (R=1.00)
Overhead 1200: f(x) = 2738.24x + -3903.62 (R=1.00)

Overhead 0 (50th%)
Overhead 400 (50th%)
Overhead 800 (50th%)
Overhead 1200 (50th%)

Overhead 0 (25th%)
Overhead 400 (25th%)
Overhead 800 (25th%)
Overhead 1200 (25th%)

Overhead 0 (95th%)
Overhead 400 (95th%)
Overhead 800 (95th%)
Overhead 1200 (95th%)

(b) HPI from Priority Ceiling Processing.
Fig. 8: HPI from the traditional IPC interference issues with different numbers of threads and quantities of work for each request.

0 1000 2000 3000 4000 5000
Number of Attackers

0

200000

400000

600000

800000

1000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s)

Linked List: f(x) = 98.22x + -912.13 (R=1.00)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(a) Endpoint Queue Sorting Attack.

0 1000 2000 3000 4000 5000
Number of Attackers

0

200000

400000

600000

800000

1000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s)

Linked List: f(x) = 185.72x + -18834.10 (R=1.00)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(b) Replenishment Queue Sorting Attack.

0 200 400 600 800 1000
Number of Attackers

0

20000000

40000000

60000000

80000000

100000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s) Linked List: f(x) = 128425.98x + -30944619.21 (R=0.95)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(c) Replenishment Wakeup Processing Attack.

Fig. 9: HPI from the Thundering Herd attacks with a linked-list kernel data structure.

0 1000 2000 3000 4000 5000
Number of Attackers

0

1000

2000

3000

4000

5000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s)

Red-Black Tree: f(x) = 534.93log(x) + -2764.54 (R=0.96)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(a) Endpoint Queue Sorting Attack.

0 1000 2000 3000 4000 5000
Number of Attackers

0

1000

2000

3000

4000

5000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s)

Red-Black Tree: f(x) = 384.62log(x) + -442.99 (R=0.97)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(b) Replenishment Queue Sorting Attack.

0 200 400 600 800 1000
Number of Attackers

0

20000000

40000000

60000000

80000000

100000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d 
(c

yc
le

s) Red-Black Tree: f(x) = 128781.04x + -31263079.52 (R=0.95)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(c) Replenishment Wakeup Processing Attack.

Fig. 10: HPI from the Thundering Herd attacks with a red-black tree kernel data structure.

introducing about 100,000 cycles (150 µs) of HPI. The intro-
duced HPI is also linear with the number of attack threads. It is
also interesting to note that, unlike the IPC interference issues
discussed previously, it takes a number of attacker threads
(∼ 125) before an impact is noticeable. This is likely due to a
combination of cache effects, where for very small numbers of
threads everything may be in L2, and the difficulty of targeting
the attack when it introduces only a small delay.

Similarly, we empirically evaluate the impact of the Re-
plenishment Queue Sorting Attack on seL4-MCS in Fig. 9b.
We see that the impact of this attack grows linearly with the
number of attacker threads and that it requires a number of
attack threads before the attack becomes noticeable. However,
this attack has a larger impact for each individual attacker
thread of approximately 185 cycles.

Lastly, we implemented the Replenishment Wakeup Pro-
cessing Attack on seL4-MCS and demonstrate its impact in
Fig. 9c. This attack is more challenging than the others to
properly orchestrate since we must predict execution times
very accurately so that all attacker threads will be replenished
at the same instant as the victim thread becomes runnable. For
a small number of attacker threads, we are unable to precisely
align the attack with the victim thread, as seen on the left of
Fig. 9c. However, once we get above about 450 attackers, the
impact of the attack becomes large enough that we can reliably
impact the victim. While this attack is harder to execute, it is
also much more powerful, as each thread causes about 100,000

cycles of HPI. The impact also grows linearly with the number
of threads, meaning that 1,000 attack threads can introduce
approximately 100 million cycles (150ms) of interference.

D. Red-Black Tree Mitigation Results
We now consider one possible mitigation for our Thunder-

ing Herd Attacks: the use of red-black trees instead of linked
lists for the sorted queues in the kernel. Because a red-black
tree maintains a O(log(n)) insert complexity, this would seem
to be an attractive means to mitigate the Endpoint Queue
Sorting and Replenishment Queue Sorting Attacks. As a result,
we replaced the linked list implementation for kernel metadata
processing in seL4-MCS with a red-black tree and repeated
the same tests from §VI-C.

Indeed, in Fig. 10a and Fig. 10b, we can see that the
red-black tree limits the Endpoint Queue Sorting Attack
and Replenishment Queue Sorting Attack respectively to a
logarithmic increase in HPI based on the number of attack
threads. However, these data structures do not mitigate the
attack completely, as an increase of up to 2,000 cycles and
3,000 cycles respectively is still demonstrated.

In contrast, we see from Fig. 10c that using a red-black tree
still results in similar impacts for the Replenishment Wakeup
Processing Attack. Just as for the linked-list version (Fig. 9c)
we see the attack become effective at about 450 attackers and
cause about 100,000 cycles of HPI per attacker above that
point. If we investigate the differences between the linked list
and red-black tree versions, we find that the red-black tree



0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H

R
T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(a) Short periods: [3, 33]ms.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(b) Moderate periods: [10, 100]ms.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(c) Long periods: [50, 250]ms.

Fig. 11: Sample schedulability graphs. All distributions uniformly distributed. Medium per-task utilizations in [0.1, 0.4].

increases the impact of the attack by around 1,500 cycles. We
posit this effect comes from the fact that while the red-black
tree decreases insert complexity from O(n) to O(log(n)), it
also increases removal complexity from O(1) to O(log(n)),
but we leave a detailed investigation for future work.

E. Queue-per-priority Mitigation Analysis

We consider one final mitigation strategy for our Thundering
Herd Attacks: the use of a data structure with separate queues
per priority level, similar to the plist structure found in
Linux [28]. A common implementation would be an array
of queues, one for each priority level. seL4-MCS has 256
priority levels (0-255), so such a data structure would have
256 queues.

For our Endpoint Queue Sorting Attack, this data structure
would completely eliminate the attack. This is because if there
were a separate queue for each priority, there would be no need
to sort the queues. With no queues to sort, insertion would be
O(1). The only cost is a small amount of additional memory.

For the Replenishment Queue Sorting Attack, a data struc-
ture with separate queues for each priority level would have
no impact. This is because the queue being attacked is not
sorted by priority, but rather by time of next replenishment.
As a result, a data structure with separate queues per priority
would merely move the sorting into the per-priority queues
rather than eliminate it. Further, an attacker would still be able
to create a large number of threads with the same priority to
cause extensive sorting in these per-priority queues.

Finally, for the Replenishment Wakeup Processing Attack,
this kind of data structure could provide benefits, but only with
extensive kernel-wide modifications. In particular, it would be
desirable to only process wakeups for processes of greater or
equal priority to the currently running process. This would
prevent wakeups for lower-priority processes from causing
HPI and those lower-priority processes would not be run
immediately anyway. While this is a promising idea, it requires
extensive redesign of seL4-MCS, which we leave for future
work, to check for pending wakeups on every context switch,
including along the IPC hot path.

VII. IMPLICATIONS FOR SYSTEM PROVISIONING

A promising mitigation to these attacks is to explicitly
provision a system to be resilient to the HPI that attackers
can induce using these attack techniques. Specifically, if a
system is provisioned with sufficient slack time, it is resilient
to attacker-induced HPI. Next we demonstrate through simple

schedulability experiments the utilization loss associated with
such provisioning. Systems that are not provisioned with such
slack are vulnerable to Thundering Herd Attacks, which can
potentially maliciously cause timing violations.
Experimental Design. For our schedulability experiments,
we consider a simple sporadic task system scheduled with
fixed-priority scheduling, as is implemented in seL4. In par-
ticular, we consider a task system as a system of n tasks
Γ = {τ1, . . . , τn}. Each task τi = (Ci, Ti) is a recurring
sequence of jobs, each of which has an execution time of Ci,
which are released sporadically with a minimum separation
of Ti time units. We assume implicit deadlines, and thus the
deadline of each job is Ti time from its release. The utilization
of τi is defined as ui = Ci/Ti, and the utilization of the task
system U(Γ) =

∑
τi∈Γ = ui.

We randomly generated task systems using commonly used
task-system distributions. We considered all combinations of
task-utilization and period distributions used in Brandenburg’s
dissertation [29] and codified in the associated Schedcat li-
brary [30]. This resulted in 54 unique task-utilization and
period combinations. For each such combination, we varied
U(Γ) ∈ {0.01, 0.02, . . . , 1.0}, which resulted in 54 unique
schedulability graphs. Three sample graphs from this larger
study are depicted in Fig. 11.

We evaluated schedulability using the classic response-time
analysis. We model the high-priority interference induced by
our attack techniques as the highest-priority task in the system,
τHPI. The period of τHPI is defined to be hyperperiod, or the
least-common multiple of all task periods. This represents the
possibility that an attacker can induce HPI at any time, but
cannot necessarily trigger such attacks multiple times to trigger
compounding effects. The execution time τHPI is chosen to
reflect the amount of HPI that an attacker is assumed to be able
to induce. Based on our previous results, we chose to evaluate
CHPI ∈ {0.975, 1.875, 7.5, 45}ms. These values are chosen
from the FIFO Endpoint Flood Attack HPI with 500 and
1000 attackers (0.975ms, 1.875, resp.), and the Replenishment
Wakeup Attack with 500 and 1000 attackers (7.5ms, 45ms,
resp.), as representative values to demonstrate the potential
range of consequences of Thundering Herd Attacks.

An admission-control test that considers this interference
derives this overhead from the number of threads in the system
paired with the results in §VI.
Results. These results demonstrate that, for task systems
with shorter periods and hence tighter timing constraints, the



HPI that these attacks can induce can significantly impact
schedulability. Indeed, the short periods considered (uniformly
distributed among [3, 33]ms) are less than the HPI from
the Replenishment Wakeup Processing Attack (45ms), and
therefore no such tasks can be guaranteed to meet their
deadlines if such attacks are possible. Even if the attacker is
assumed to only be able to spawn fewer threads and therefore
induce less HPI, there can still be significant utilization loss.

In addition to enabling a proper admission-control test to
mitigate the Thundering Herd Attacks, these results can also
be interpreted as demonstrating what systems are vulnerable
to Thundering Herd Attacks. Any task system that is deemed
schedulable without considering HPI but is not schedulable
with HPI is vulnerable to an attack that can trigger a deadline
overrun. This is true even in budgeted systems where temporal
interference from one task to another is controlled, as the HPI
can be induced by low-priority tasks with minimal budgets.

These evaluations demonstrate the schedulability-related
implications of the system-coordination dilemma in light of
our Thundering Herd Attacks. We next discuss alternative
means of mitigating these attacks and resolving this dilemma.

VIII. DISCUSSION AND RELATED WORK

Synchronous IPC mechanisms have been studied as an at-
tack vector [5] as synchronous IPC ties the execution of clients
to a server’s computation and introduces inter-client interfer-
ence when execution is serialized through server threads. We
have demonstrated in §V and §VI that the kernel mechanisms
for maintaining the necessary IPC and execution metadata –
which track the state of communication and properly schedule
threads – can themselves become attack targets. A common
characteristic of each attack is that kernel processing on this
metadata is not constant-time, and can thus be targeted by
attackers. These attacks are enabled by the non-preemptive
nature of the kernel, made worse by multicore systems that
prevent parallel kernel execution using a lock.

While we study attacks on seL4-MCS, the core challenges
generalize to other systems with non-preemptive processing
of IPC and budget-management data structures. For example,
µ-kernels commonly use non-preemptive spin-locks to protect
data-structures and disable interrupts during timer processing.
Thus these attacks might be more broadly impactful.

In the rest of this section we discuss implications of these
findings for µ-kernel design and highlight related work.

A. Implications for µ-Kernel Design

§VII discusses how to integrate the measured overheads
from the various attacks into schedulability analysis. This test
can be integrated into the system’s admission controller. Un-
fortunately, we demonstrate that doing so can cause significant
utilization loss. Here we qualitatively suggest and assess a
number of alternate kernel-design options.
Track metadata with O(log(n)) data-structures. IPC end-
point wait queues are tracked with linked lists and are sorted
in seL4-MCS. Replacing these with balanced binary trees
will asymptotically decrease the cost of adding threads to

the queue, which would comparably decrease the amount of
non-preemptible execution, as shown in §VI-D. This does not
defeat the attacks, but does lessen their impact. This effect has
been observed when using O(log(n)) data structures for other
potentially contended kernel data structures such as timers [31]
and futexes [32].

Logarithmic structures can also be used to track replen-
ishments, which would similarly decrease the asymptotic
overheads for replenishment attacks. Unfortunately, this is not
a clear benefit. Though adding threads to the replenishment
queue on budget depletion would benefit, the overhead for
processing replenishments during seL4’s timer will increase,
as shown in §VI-D. Each of the n replenishments that require
processing will increase from constant to logarithmic over-
head. Our results suggest this may be a reasonable trade off.

Track wait queues with queue-per-priority data structures.
Instead of using a balanced tree, a constant-time structure
common in fixed-priority scheduling implementations could
be used for IPC endpoint wait queues. This is an array
with one entry per priority, each containing a list of waiting
threads. A bitmap (or nested bitmaps) are used to track which
priorities have waiting threads. The constant-time overhead of
this approach would defeat the attacks on kernel IPC endpoint
queues. The primary cost of this approach would be a minor
increase in IPC endpoint memory consumption commensurate
with the number of potential priorities.

Expanded use of preemption points. Preemption points are
explicit closures that capture a kernel in-progress operation
and allow interrupts to be processed, later continuing kernel
execution from the closure. If they could be applied to bound
the cost of the wait-queue and replenishment operations,
they could be an important part of a solution. Preemption
points add significant complexity to the system and require
kernel operations to be iteratively computed. For example,
preemption points are used to enable capability revocation
to revoke a limited number of resources, enable preemptions,
and later resume revocation from where it had previously left
off. Unfortunately, iterating through a wait queue, or through
a queue of replenishments, does not fall into the traditional
type of logic that preemption points are designed for, as
each iteration does not remove work from the computation
to be done after a preemption point. Such an iteration could
not be resumed after a preemption point as the preemption
implies that the queue’s structure could have been updated by
intervening operations (e.g., removing the thread from the wait
queue referenced by the current iterator). Preemption point
logic would need to increase in complexity to handle wait-
queue operations and budget depletion.

Preemption points also cannot be added to the replenish-
ment processing. Preemption points rely on being able to
resume a thread that continues kernel processing from where it
had previously left off. Despite preemption point’s superficial
applicability to these problems, unfortunately it won’t help
with all attacks, particularly with replenishment processing in
timer-interrupt context.



Partial processing of wakeups in interrupts.
TimerShield [31] represents a potential solution to the
replenishment-processing problem. The key insight is that
if replenishments can be tracked per-priority, then all
replenishments for time t do not need to be processed at that
time. Instead, at each scheduling decision, the replenishment
queue can be consulted and processed if the highest-priority
threads requiring replenishments have the same or higher
priority than the highest-priority thread in the run queue.
Though this approach is appealing, it complicates the
system, requiring the design of the replenishment logic to be
considered more broadly within the system as a whole.

B. Other µ-Kernel Designs

Although seL4 is based on the L4 µ-kernel heritage, it is
a unique µ-kernel with functional verification as its primary
goal. Below we discuss other µ-kernel designs.
Fiasco and Nova. Fiasco [8] takes a different view on priority
and budget management during IPC. In Fiasco, servers execute
using the budget of the client requesting their service (as in
seL4-MCS). However, in both Fiasco and Nova [9] the server
inherits the highest priority of any client transitively waiting
on the service. This can add overhead to the scheduling path as
the dependencies of the highest-priority thread (and its depen-
dencies’ dependencies, etc.) are traversed to find the server to
execute. Additionally, Fiasco adds vCPU budgets [33], which
require depletion and replenishment processing.

Generally, these kernels execute preemptively, which pre-
vents Thundering Herd attacks on kernel structures from
causing global interference. However, both use spin-locks to
protect kernel structures, which selectively disable interrupts
while processing data structures, and both disable interrupts
for interrupt execution. We have not assessed if Fiasco or
Nova exhibit similar attacks on their non-preemptive access
to data-structures. The lessons of this research should inform
the assessment of their vulnerability to such attacks.
Thread migration in Composite. Thread-migration-based
IPC [34]–[36] is a different mechanism for synchronous
coordination between client and server. A server process
is the target of the IPC, not a server thread. IPC from a
client triggers execution in the server that proceeds within the
same scheduler context as in the client process. It is called
“thread migration” because the same thread simply continues
execution in the server, though spatial isolation is maintained
by splitting client/server execution across separate stacks and
register contents. Since the same schedulable client thread
executes in the server, the same scheduler abstractions such
as priority and budget are maintained. This structure imposes
a few requirements: (1) servers are concurrent by default and
thus require synchronized access to shared data structures, and
(2) server stacks must be allocated upon IPC to the server as
the first action within the server’s computation. Both of these
challenges can be addressed by efficient, predictable mech-
anisms for stacks and mutual exclusion for both fixed [37],
and dynamic [38] sets of threads. Thread migration can avoid
blocking semantics in the kernel; instead, schedulers can be

implemented in user-level processes [39], [40]. Even where
budgets are tracked in the kernel [41], replenishments are
exported from the kernel to user-level schedulers.

As thread migration enables the policies for contention,
scheduling, and budget management to be extracted from the
kernel, all kernel operations can be constant-time as demon-
strated by [42]. However, within the scheduling processes that
maintain wait queues, budgets, and priorities, it is possible
that Thundering Herd Attacks could be impactful. Though
interrupts are never disabled for user-level processing, critical
sections within the scheduler might comparably be attacked,
delaying necessary scheduling decisions.

C. Static Partitioning Hypervisors

Another potential solution to these attacks is to use a static
partitioning hypervisor, such as Jailhouse [43] to statically
isolate untrusted parts of the system from one another. This is
perhaps a reasonable solution for coarse-grained isolation of
untrusted and uncooperating components, provided that there
are sufficient hardware resources to be dedicated to individual
partitions. However, µ-kernels such as seL4 enable more fine-
grained isolation, enabling the principle of least privilege to
be employed in system design, such as in Patina [18]. For
example, many trusted, but not trustworthy, components may
communicate and collaborate and therefore need to be co-
located within a single static partition. But even a trusted
component may be compromised, and a component-based
architecture, and resource sharing and strong isolation enabled
by a trustworthy µ-kernel such as seL4 limit the damage an
attacker can do. A static partitioning hypervisor can therefore
help ameliorate some of these concerns, but does not funda-
mentally solve the system-coordination dilemma.
Summary. While we’ve discussed several potential solutions
to Thundering Herd Attacks in seL4, they all present trade-
offs. We’ve also analyzed different systems and shown that
Thundering Herd Attacks are a more general concern.

IX. CONCLUSION

In this work we have explored attacks on temporal isolation
in µ-kernels focusing on the synchronous IPC and budget-
replenishment mechanisms. We first discussed long-standing
issues with synchronous IPC-based shared servers and char-
acterized the impact of these issues on the seL4 µ-kernel.
The usual mitigations for these attacks are priority-sorted
endpoint queues and replenishment policies. Unfortunately,
we then showed that these very mechanisms enable novel,
powerful attacks. We implemented and evaluated these attacks
on endpoint-queue sorting and replenishment queues in seL4
with MCS extensions and demonstrated their linear impact to
the number of attacker threads, with up to 100,000 cycles of
interference per thread. We presented an approach to account
for these attacks in a schedulability analysis and illustrated
associated utilization loss. Lastly, we discussed mitigation
approaches and their limitations.



REFERENCES

[1] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE International
Real-Time Systems Symposium. IEEE Computer Society, 2007, pp.
239–243.

[3] A. Burns and R. Davis, “Mixed criticality systems - a review,” Depart-
ment of Computer Science, University of York, Tech. Rep., 2013.

[4] J. Liedtke, “Improving IPC by kernel design,” in Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles (SOSP).
ACM, 1993, pp. 175–188.

[5] J. S. Shapiro, “Vulnerabilities in synchronous IPC designs,” in Proceed-
ings of the 2003 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2003, pp. 251–262.

[6] S. Ruocco, “A real-time programmer’s tour of general-purpose L4
microkernels,” EURASIP Journal on Embedded Systems, vol. 2008,
2008.

[7] A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-context
capabilities: A principled, light-weight operating-system mechanism for
managing time,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, pp. 26:1–26:16.

[8] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for
real-time systems,” in Proceedings of the 17th Euromicro Conference
on Real-Time Systems (ECRTS). IEEE Computer Society, 2005, pp.
89–97.

[9] U. Steinberg and B. Kauer, “Nova: A microhypervisor-based secure vir-
tualization architecture,” in Proceedings of the 5th European conference
on Computer systems (EuroSys). ACM, 2010, pp. 209–222.

[10] L. M. Ruane, “Process synchronization in the UTS kernel,” Computing
systems, vol. 3, no. 3, pp. 387–421, 1990.

[11] J. Liedtke, “On µ-kernel construction,” in 15th ACM Symposium on
Operating Systems Principles (SOSP). ACM, 1995, pp. 237–250.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2009, pp. 207–220.

[13] K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt
in 20 years of L4 microkernels?” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP). ACM, 2013,
pp. 133–150.

[14] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day, “Chaos:
A system for criticality-aware, multi-core coordination,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2019, pp. 77–89.

[15] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,” in
Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS).
IEEE Computer Society, 2011, pp. 339–348.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on
computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[17] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES: A component model
for secure microkernel-based embedded systems,” Journal of Systems
and Software, vol. 80, no. 5, pp. 687–699, 2007.

[18] S. Jero, J. Furgala, R. Pan, P. K. Gadepalli, A. Clifford, B. Ye, R. Khazan,
B. C. Ward, G. Parmer, and R. Skowyra, “Practical principle of least
privilege for secure embedded systems,” in 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2021, pp. 1–13.

[19] CrowdStrike, Inc. (2021) 2021 global threat re-
port. [Online]. Available: https://go.crowdstrike.com/rs/281-OBQ-
266/images/Report2021GTR.pdf

[20] M. Crosignani, M. Macchiavelli, and A. F. Silva, “Pirates without
borders: The propagation of cyberattacks through firms’ supply chains,”
FRB of New York Staff Report, no. 937, 2021.

[21] S. Liu, N. Guan, D. Ji, W. Liu, X. Liu, and W. Yi, “Leaking your engine
speed by spectrum analysis of real-time scheduling sequences,” Journal
of Systems Architecture, vol. 97, pp. 455–466, 2019.

[22] C. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A
novel side-channel in real-time schedulers,” in 25th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). IEEE,
2019, pp. 90–102.

[23] S. Liu and W. Yi, “Task parameters analysis in schedule-based timing
side-channel attack,” IEEE Access, vol. 8, pp. 157 103–157 115, 2020.

[24] J. Liedtke, N. Islam, and T. Jaeger, “Preventing denial-of-service attacks
on a µ-kernel for WebOSes,” in Proceedings of The Sixth Workshop on
Hot Topics in Operating Systems (HotOS). IEEE Computer Society,
1997, pp. 73–79.

[25] G. Heiser. (2019) How to (and how not to) use seL4 IPC. [Online].
Available: https://microkerneldude.org/2019/03/07/how-to-and-how-not-
to-use-sel4-ipc/

[26] J. Chen, G. Nelissen, W. Huang, M. Yang, B. B. Brandenburg, K. Blet-
sas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen, “Many suspensions, many problems:
A review of self-suspending tasks in real-time systems,” Real-Time
Systems, vol. 55, no. 1, pp. 144–207, 2019.

[27] Trustworthy Systems Team, Data61. (2020) seL4 reference manual:
Version 12.0.0. [Online]. Available: https://sel4.systems/Info/Docs/seL4-
manual-12.0.0.pdf

[28] (2022) plist.h. [Online]. Available:
https://github.com/torvalds/linux/blob/master/include/linux/plist.h

[29] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, The University of North Carolina
at Chapel Hill, 2011.

[30] ——. (2022) SchedCAT: The schedulability test collection and toolkit.
[Online]. Available: https://github.com/brandenburg/schedcat

[31] P. Patel, M. Vanga, and B. B. Brandenburg, “TimerShield: Protecting
high-priority tasks from low-priority timer interference,” in 2017 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE Computer Society, 2017, pp. 3–12.

[32] A. Zuepke and R. Kaiser, “Deterministic futexes: Addressing WCET and
bounded interference concerns,” in 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2019, pp. 65–
76.

[33] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hierar-
chical scheduling,” in Proceedings of the 12th International Conference
on Embedded Software (EMSOFT). ACM, 2012, pp. 93–102.

[34] B. Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread
model,” in Proceedings of the Winter 1994 USENIX Technical Con-
ference. USENIX Association, 1994, pp. 97–114.

[35] E. Gabber, C. Small, J. L. Bruno, J. C. Brustoloni, and A. Silber-
schatz, “Pebble: A component-based operating system for embedded
applications,” in USENIX Workshop on Embedded Systems. USENIX
Association, 1999, pp. 55–65.

[36] G. Parmer, “The case for thread migration: Predictable IPC in a
customizable and reliable OS,” in Proceedings of the Workshop on
Operating Systems Platforms for Embedded Real-Time applications
(OSPERT), 2010, p. 91.

[37] Q. Wang, J. Song, and G. Parmer, “Stack management for hard real-
time computation in a component-based OS,” in Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS). IEEE Computer Society,
2011, pp. 78–89.

[38] Q. Wang, J. Song, G. Parmer, G. Venkataramani, and A. Sweeney,
“Increasing memory utilization with transient memory scheduling,” in
Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS).
IEEE Computer Society, 2012, pp. 248–259.

[39] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the
29th IEEE International Real-Time Systems Symposium (RTSS). IEEE
Computer Society, 2008, pp. 232–243.

[40] P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: OS support for near
zero-cost, configurable scheduling,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2020, pp. 160–
173.

[41] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer,
“Temporal capabilities: Access control for time,” in 2017 IEEE Real-
Time Systems Symposium (RTSS). IEEE Computer Society, 2017, pp.
56–67.

[42] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “SPeCK: A kernel
for scalable predictability,” in Proceedings of the 21st IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE
Computer Society, 2015, pp. 121–132.

[43] J. Kiszka. (2022) Jailhouse hypervisor. [Online]. Available:
https://github.com/siemens/jailhouse


